Skip to main content

Advertisement

Log in

Efficacy of punarnavine in restraining organ-specific tumour progression in 4T1-induced murine breast tumour model

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Most of the breast cancer deaths occur when cancer cells depart from their tumour of origin and spread systemically and colonise distant organs. The present study was to find out whether punarnavine, the quinolizidine alkaloid, with already proven antimetastatic effect on spontaneous B16F10 pulmonary metastasis has got any effect on a drastic organ-specific breast cancer spread. For the study, we selected a syngenic mouse 4T1 breast tumour model that mimics stage four of human breast cancer. The metastatic progression of 4T1 to lymph nodes, lungs, and liver was reduced by punarnavine (40 mg/kg body weight) administration in BALB/c mice. This was evident from the histopathology of these organs as well as from the reduction in the metastatic cell density of cultured 6-thioguanine-resistant 4T1 cells in the punarnavine-treated group compared to the control group. There was also a significant (p < 0.0001) inhibition of the primary breast tumour growth in the orthotopic site of induction with a simultaneous increase (p < 0.0001) in the life span of treated animals. The assessment of biochemical parameters such as hydroxyproline, hexosamine, uronic acid, sialic acid and γ-glutamyl transferase and the analysis of various cytokines VEGF, IL-1β, TNF-α and GM-CSF showed a similar pattern of reduction in punarnavine (p < 0.0001) treated group compared to the control group. The gene expression study revealed the inhibitory effect of punarnavine on the major genes MMP-2, MMP-9, TIMP-1, TIMP-2 and VEGF involved in the metastatic process. These findings undeniably proved the potential of this quinolizidine alkaloid in combating breast tumour development and its progression in the studied murine model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Foetal bovine serum

HBSS:

Hanks balanced salt solution

ELISA:

Enzyme-linked immunosorbent assay

IL-1β:

Interleukin-1β

TNF-α:

Tumour necrosis factor-α

GMCSF:

Granulocyte monocyte colony-stimulating factor

VEGF:

Vascular endothelial growth factor

MMP:

Matrix metalloproteinase

TIMP:

Tissue inhibitor of matrix metalloproteinase

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

TNBC:

Triple-negative breast cancer

References

  • Agarwal RR, Dutt SS (1935) Chemical examination of punarnava or Boerhavia diffusa Linn II, isolation of an alkaloid punarnavine. Proc Acad Sci United Prov Agra Audh India 5:240–242

    CAS  Google Scholar 

  • Aher V, Chattopadhyay P, Goyary D, Veer V (2013) Evaluation of the genotoxic and antigenotoxic potential of the alkaloid punarnavine from Boerhavia diffusa. Planta Med 79:939–945

    Article  CAS  PubMed  Google Scholar 

  • Bergman I, Loxley R (1970) The determination of hydroxyproline in urine hydrolysates. Clin Chim Acta 27:347–349

    Article  CAS  PubMed  Google Scholar 

  • Bibby MC (2004) Orthotopic models of cancer for preclinical drug evaluation. Eur J Cancer 40:852–857

    Article  CAS  PubMed  Google Scholar 

  • Bitter T, Muir HM (1962) A modified uronic acid carbazole reaction. Anal Biochem 4:330–334

    Article  CAS  PubMed  Google Scholar 

  • Braithwaite D, Demb J, Henderson ML (2016) Optimal breast cancer screening strategies for older women: current perspectives. Clin Interv Aging 11:111–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283

    Article  CAS  PubMed  Google Scholar 

  • Büll C, Stoel MA, den Brok MH, Adema GJ (2014) Sialic acids sweeten a tumor’s life. Cancer Res 74:3199–3204

    Article  CAS  PubMed  Google Scholar 

  • Carlson RW, Allred DC, Anderson BO et al (2009) Breast cancer. Clinical practice guidelines in oncology. J Natl Compr Canc Netw 7:122–192

    Article  CAS  PubMed  Google Scholar 

  • Chiang AC, Massagué J (2008) Molecular basis of metastasis. N Engl J Med 359:2814–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffelt SB, Kersten K, Doornebal CW et al (2015) IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522:345–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson J, Smith GD, Boak J, Peters TJ (1979) gamma-Glutamyltransferase in human and mouse breast tumours. Clin Chim Acta 96:37–42

    Article  CAS  PubMed  Google Scholar 

  • Dhingra D, Valecha R (2014) Evidence for involvement of the monoaminergic system in antidepressant-like activity of an ethanol extract of Boerhavia diffusa and its isolated constituent, punarnavine, in mice. Pharm Biol 52:767–774

    Article  CAS  PubMed  Google Scholar 

  • DuPré SA, Redelman D, Hunter KW (2007) The mouse mammary carcinoma 4T1: characterization of the cellular landscape of primary tumours and metastatic tumour foci. Int J Exp Pathol 88:351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eccles SA, Box G, Court W et al (1994) Preclinical models for the evaluation of targeted therapies of metastatic disease. Cell Biophys 24:279–291

    Article  PubMed  Google Scholar 

  • Elson LA, Morgan WT (1933) A colorimetric method for the determination of glucosamine and chondrosamine. Biochem J 27:1824–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engebraaten O, Vollan HKM, Børresen-Dale A-L (2013) Triple-negative breast cancer and the need for new therapeutic targets. Am J Pathol 183:1064–1074

    Article  CAS  PubMed  Google Scholar 

  • Greenwell M, Rahman PKSM (2015) Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res 6:4103–4112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta GP, Nguyen DX, Chiang AC et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446:765–770

    Article  CAS  PubMed  Google Scholar 

  • Ho B-Y, Lin C-H, Apaya MK et al (2012) Silibinin and paclitaxel cotreatment significantly suppress the activity and lung metastasis of triple negative 4T1 mammary tumor cell in mice. J Tradit Complement Med 2:301–311

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 17:343–359

    Article  CAS  PubMed  Google Scholar 

  • Hogan-Ryan A, Fennelly JJ, Jones M et al (1980) Serum sialic acid and CEA concentrations in human breast cancer. Br J Cancer 41:587–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussaini SAB, Andola SK, Mahanta A (2015) Study of metastasis in lymphnode biopsies with special reference to immunohistochemistry (IHC) in metastatic breast carcinoma. J Clin Diagn Res 9:13–16

    Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial–mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Takahashi H, Lin W-W et al (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehembre F, Regenass U (2012) Metastatic disease: a drug discovery perspective. Semin Cancer Biol 22:261–271

    Article  CAS  PubMed  Google Scholar 

  • Manu KA, Kuttan G (2009a) Anti-metastatic potential of Punarnavine, an alkaloid from Boerhavia diffusa Linn. Immunobiology 214:245–255

    Article  CAS  PubMed  Google Scholar 

  • Manu KA, Kuttan G (2009b) Immunomodulatory activities of Punarnavine, an alkaloid from Boerhavia diffusa. Immunopharmacol Immunotoxicol 31:377–387

    Article  CAS  PubMed  Google Scholar 

  • Manu KA, Kuttan G (2009c) Punarnavine induces apoptosis in B16F-10 melanoma cells by inhibiting NF-kappaB signaling. Asian Pac J Cancer Prev 10:1031–1037

    PubMed  Google Scholar 

  • Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    Article  CAS  PubMed  Google Scholar 

  • Oakley GJ III, Tubbs RR, Crowe J et al (2006) HER-2 amplification in tubular carcinoma of the breast. Am J Clin Pathol 126:55–58

    Article  CAS  PubMed  Google Scholar 

  • Ouzounova M, Lee E, Piranlioglu R et al (2017) Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade. Nat Commun 8:1–13

    Article  CAS  Google Scholar 

  • Pulaski BA, Ostrand-Rosenberg S (2001) Mouse 4T1 Breast tumor model. In: Current protocols in immunology. Wiley, Hoboken, NJ, USA, pp 1–16

  • Radisky ES, Radisky DC (2010) Matrix metalloproteinase-induced epithelial–mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia 15:201–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Saraswati S, Alhaider AA, Agrawal SS (2013) Punarnavine, an alkaloid from Boerhaavia diffusa exhibits anti-angiogenic activity via downregulation of VEGF in vitro and in vivo. Chem Biol Interact 206:204–213

    Article  CAS  PubMed  Google Scholar 

  • Silva VL, Ferreira D, Nobrega FL, Martins IM (2016) Selection of novel peptides homing the 4T1 CELL line: exploring alternative targets for triple negative breast cancer. PLoS One 11:1–15

    Google Scholar 

  • Skoza L, Mohos S (1976) Stable thiobarbituric acid chromophore with dimethyl sulphoxide. Application to sialic acid assay in analytical de-O-acetylation. Biochem J 159:457–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su S, Liu Q, Chen J et al (2014) A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25:605–620

    Article  CAS  PubMed  Google Scholar 

  • Szasz G (1976) Reaction-rate method for gamma-glutamyltransferase activity in serum. Clin Chem 22:2051–2055

    CAS  PubMed  Google Scholar 

  • Tao K, Li J, Warner J et al (2001) Multiple lysosomal trafficking phenotypes in metastatic mouse mammary tumor cell lines. Int J Oncol 19:1333–1339

    CAS  PubMed  Google Scholar 

  • Vanharanta S, Massagué J (2013) Origins of metastatic traits. Cancer Cell 24:410–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernon AE, Bakewell SJ, Chodosh LA (2007) Deciphering the molecular basis of breast cancer metastasis with mouse models. Rev Endocr Metab Disord 8:199–213

    Article  CAS  PubMed  Google Scholar 

  • Wajner SM, Capp C, Brasil BA et al (2014) Reduced tissue inhibitor of metalloproteinase-2 expression is associated with advanced medullary thyroid carcinoma. Oncol Lett 7:731–737

    Article  PubMed  Google Scholar 

  • Wculek SK, Malanchi I (2015) Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528:413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigelt B, Peterse JL, van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    Article  CAS  PubMed  Google Scholar 

  • West DC, Hampson IN, Arnold F, Kumar S (1985) Angiogenesis induced by degradation products of hyaluronic acid. Science 228:1324–1326

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Deng J, Rychahou PG et al (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15:416–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong G, Deng L, Zhu J et al (2014) Prolyl-4-hydroxylase α subunit 2 promotes breast cancer progression and metastasis by regulating collagen deposition. BMC Cancer 14:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav L, Puri N, Rastogi V, Satpute P (2015) Tumour angiogenesis and angiogenic inhibitors: a review. J Clin 9:1–5

    CAS  Google Scholar 

  • Zelenay S, van der Veen AG, Böttcher JP et al (2015) Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162:1257–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the Council of Scientific and Industrial Research (CSIR), Government of India for the senior research fellowship provided to Ms. Gilcy George K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girija Kuttan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George Kallivalappil, G., Kuttan, G. Efficacy of punarnavine in restraining organ-specific tumour progression in 4T1-induced murine breast tumour model. Inflammopharmacol 27, 701–712 (2019). https://doi.org/10.1007/s10787-018-0490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-018-0490-0

Keywords

Navigation