Skip to main content
Log in

Numerical Simulation of Nozzle Height on the Effect of Fluid Flow in a Peirce–Smith Converter

  • Computational Modeling in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The Peirce–Smith (PS) converter is one of the pyrometallurgical copper smelting processes, in which the flow field in the converter has an important influence on production efficiency. In this study, a CFD simulation of the air–oil–water cold model with a ratio of 1:5 was adopted to investigate the gas–liquid–liquid three-phase flow characteristics. The effect of nozzle height on the flow field, velocity, phase, and wall shear stress have been described. The optimal nozzle height is 0.105–0.125 m, under which the flow field distributed uniformly and the gas–liquid mixing was sufficient. The shear stress on the lining wall above the nozzles is larger than in other places, so the nozzle height can be changed regularly during the injection process to make the lining near the nozzles be scoured evenly so prolonging the furnace service life. The optimal nozzle height for an industrial PS converter was suggested to be from 0.525 m to 0.625 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(adapted from Ref. 14).

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. H. Liu, L. G. Xia, Miner. Process. Extr. Metall., 128, 117 (2019)

  2. R. Sridhar, J.M. Toguri, and S. Simeonov, JOM 49, 48. (1997).

    Article  Google Scholar 

  3. J. Vaarno, P. Jyrki, T. Ahokainen, and A. Jokilaakso, Appl. Math. Model. 22, 907. (1998).

    Article  Google Scholar 

  4. A. Valencia, R. Paredes, M. Rosales, E. Godoy, and J. Ortega, Int. Commun. Heat Mass Transfer 31, 21. (2004).

    Article  Google Scholar 

  5. K. Z. Song, A. Jokilaakso, Miner. Process. Extr. Metall. Rev., 1 (2020).

  6. A.K. Hasanzadeh-Lileh, M. Halali, M. Askari, and M.T. Manzari, Chem. Prod. Process Model. 3, 1. (2008).

    Google Scholar 

  7. D.K. Chibwe, G. Akdogan, C. Aldrich, and R.H. Eric, Chem. Prod. Process Model. 6, 1. (2011).

    Google Scholar 

  8. X. Jiang, Z. Cui, M. Chen, and B. Zhao, Metall. Mater. Trans. B 50, 173. (2019).

    Article  Google Scholar 

  9. L. Shui, X.D. Ma, Z.X. Cui, and B.J. Zhao, JOM 70, 2119. (2018).

    Article  Google Scholar 

  10. L. Shui, Z.X. Cui, X.D. Ma, X. Jiang, M. Chen, Y. Xiang, and B.J. Zhao, JOM 70, 2065. (2018).

    Article  Google Scholar 

  11. A. Almaraz, L. César, I. Arellano, M.A. Barrón, D. Jaramillo, F. Reyes, and G. Plascencia, Miner Eng. 56, 102. (2014).

    Article  Google Scholar 

  12. X. Zhao, H.L. Zhao, L.F. Zhang, and L.Q. Yang, Int. J. Miner. Metall. Mater. 25, 37. (2018).

    Article  Google Scholar 

  13. H.L. Zhao, X. Zhao, L.Z. Mu, L.F. Zhang, and L.Q. Yang, Int. J. Miner. Metall. Mater. 26, 1092. (2019).

    Article  Google Scholar 

  14. H.L. Zhao, J.Q. Wang, F.Q. Liu, and H.Y. Sohn, Metall. Mater. Trans. B 52, 440. (2021).

    Article  Google Scholar 

  15. A. Sokolichin, G. Eigenberger, A. Lapin, and A. Lübert, Chem. Eng. Sci. 52, 611. (1997).

    Article  Google Scholar 

  16. J. Xiao, H.J. Yan, M. Schubert, S. Unger, L. Liu, E. Schleicher, U. Hampel, and J. Cent, South Univ. 26, 2068. (2019).

    Article  Google Scholar 

  17. A. Sokolichin, G. Igenberger, A. Lapin, and A. Lübert, Chem. Eng. Sci. 52, 611. (1997).

    Article  Google Scholar 

  18. Z.Y. Zhang, H.J. Yan, F.K. Liu, and J.M. Wang, Chin. J. Nonferrous. Met. 23, 1471. (2013).

    Google Scholar 

  19. P. Shao, and L. Jiang, Int. J. Mol. Sci. 20, 5757. (2019).

    Article  Google Scholar 

  20. M. Annaland, N.G. Deen, and J. Kuipers, Chem. Eng. Sci. 60, 2999. (2005).

    Article  Google Scholar 

  21. J. L. Zhang, Chin Nonferrous. Metall., 2, 11 (2017).

  22. X.W. Wan, W.D. Yang, X. Tang, and B.J. Ma, Chin Nonferrous. Metall. 1, 40. (2007).

    Google Scholar 

  23. F. Qian, X.K. Duan, W.A. Yang, G.Q. Liu, and H.X. Li, Mater. Rep. 33, 3882. (2019).

    Google Scholar 

  24. A.A. Metelkin, O.Y. Sheshukov, M.V. Savelev, A.A. Kotlyarov, O.I. Shevchenko, and Y.A. Lysenko, Steel Transl. 48, 12. (2018).

    Article  Google Scholar 

  25. M.M. Striplin Jr., J.M. Potts, and E.C. Marks, J. Electrochem. Soc. 106, 146. (1959).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51974018), the Guangxi Innovation-Driven Development Project (AA18242042-1), and the Fundamental Research Funds for the Central Universities (FRF-TP-19-016A3). The authors are also grateful to the reviewers for their arduous work in providing many pertinent comments and suggestions, which helped in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Xiao, Y., Zhou, Y. et al. Numerical Simulation of Nozzle Height on the Effect of Fluid Flow in a Peirce–Smith Converter. JOM 73, 2938–2945 (2021). https://doi.org/10.1007/s11837-021-04813-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04813-9

Navigation