Skip to main content
Log in

A Water Model Study on Mixing Behavior of the Two-Layered Bath in Bottom Blown Copper Smelting Furnace

  • Multiphase Flows in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The bottom-blown copper smelting furnace is a novel copper smelter developed in recent years. Many advantages of this furnace have been found, related to bath mixing behavior under its specific gas injection scheme. This study aims to use an oil–water double-phased laboratory-scale model to investigate the impact of industry-adjustable variables on bath mixing time, including lower layer thickness, gas flow rate, upper layer thickness and upper layer viscosity. Based on experimental results, an overall empirical relationship of mixing time in terms of these variables has been correlated, which provides the methodology for industry to optimize mass transfer in the furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. B. Zhao, Z. Cui, and Z. Wang, in International Symposium on High-Temperature Metallurgical Processing, 4th, San Antonio, United States, 3–7 March 2013, pp. 1–10.

  2. J. Yan, in Proceedings of the Copper 2013Cobre 2013 International Conference, Santiago, Chile, 1–4 December 2013, pp. 873–887.

  3. B. Li, J. Jiang, K. Wei, F. Li, and X. Hao, in Proceedings of the Copper 2013Cobre 2013 International Conference, Santiago, Chile, 1–4 December 2013, pp. 889–896.

  4. L. Feng, in Proceedings of the Copper 2013Cobre 2013 International Conference, Santiago, Chile, 1–4 December 2013, pp. 897–909.

  5. Z. Cui, Z. Wang, and B. Zhao, in Proceedings of the Copper 2013Cobre 2013 International Conference, Santiago, Chile, 1–4 December 2013, pp. 923–933.

  6. Z. Cui, Z. Wang, and R. Li, in Proceedings of the Copper 2013Cobre 2013 International Conference, Santiago, Chile, 1–4 December 2013, pp. 935–943.

  7. Z. Cui, Z. Wang, J. Zheng, and R. Li, in Proceedings of the Copper 2013Cobre 2013 International Conference, Santiago, Chile, 1–4 December 2013, pp. 1047–1057.

  8. X. Hao, Z. Lu, K. Wei, Z. Zhang, L. Hu, B. Li, Z. Wen, F. Su, and Y. Yu, in Proceedings of the Copper 2013Cobre 2013 International Conference, Santiago, Chile, 1–4 December 2013, pp. 1035–1045.

  9. D. Mazumdar and R.I.L. Guthrie, Metall. Trans. B 17B, 725 (1986).

    Article  Google Scholar 

  10. A.M. Amaro-Villeda, M.A. Ramirez-Argaez, and A.N. Conejo, ISIJ Int. 54, 1 (2014).

    Article  Google Scholar 

  11. J. Mandal, S. Patil, M. Madan, and D. Mazumdar, Metall. Trans. B 36B, 479 (2005).

    Article  Google Scholar 

  12. S.H. Kim and R.J. Fruehan, Metall. Trans. B 18B, 381 (1987).

    Article  Google Scholar 

  13. S.P. Patil, D. Satish, M. Peranandhanathan, and D. Mazumdar, ISIJ Int. 50, 1117 (2010).

    Article  Google Scholar 

  14. D. Mazumdar, H. Nakajima, and R.I.L. Guthrie, Metall. Trans. B 19B, 507 (1988).

    Article  Google Scholar 

  15. D. Mazumdar and R.I.L. Guthrie, Metall. Trans. B 41B, 976 (2010).

    Article  Google Scholar 

  16. D. Mazumdar and J.W. Evans, Metall. Trans. B 35B, 400 (2004).

    Article  Google Scholar 

  17. K. Krishnapisharody and G.A. Irons, Metall. Trans. B 37B, 763 (2006).

    Article  Google Scholar 

  18. J.W. Han, S.H. Heo, D.H. Kam, B.D. You, J.J. Pak, and H.S. Song, ISIJ Int. 41, 1165 (2001).

    Article  Google Scholar 

  19. L.T. Khajavi and M. Barati, Metall. Trans. B 41B, 86 (2010).

    Article  Google Scholar 

  20. L. Shui, Z. Cui, X. Ma, M.A. Rhamdhani, A. Nguyen, and B. Zhao, Metall. Trans. B 46B, 1218 (2015).

    Article  Google Scholar 

  21. J. Szekely, Fluid Flow Phenomena in Metals Processing (New York: Academic Press INC, 1979), pp. 392–418.

    Book  Google Scholar 

  22. W.E. Forsythe, Smithsonian Physical Tables, 9th rev ed. (New York: Knovel, 2003), p. 319.

    Google Scholar 

  23. M.E. Schlesinger, Extractive Metallurgy of Copper, 5th ed. (Saint Louis: Elsevier, 2011), p. 81.

    Google Scholar 

  24. M. Chen and B. Zhao, in Proceedings of the Copper 2013Cobre 2013 International Conference, Santiago, Chile, 1–4 December 2013, pp. 799–812.

  25. D. Mazumdar and R.I. Guthrie, ISIJ Int. 35, 1 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dongying Fangyuan Nonferrous Metals Co. Ltd., China, and The University of Queensland, Australia, for providing financial support for this study through the ‘‘Fangyuan Fellowship’’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lang Shui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shui, L., Cui, Z., Ma, X. et al. A Water Model Study on Mixing Behavior of the Two-Layered Bath in Bottom Blown Copper Smelting Furnace. JOM 70, 2065–2070 (2018). https://doi.org/10.1007/s11837-018-2879-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2879-z

Navigation