Skip to main content
Log in

Joining of Advance Engineering Thermoplastic Using Novel Self-Heated FSW Tool

  • Multiscale Experiments and Modeling in Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Friction stir welding (FSW) is an emerging technique for welding of thermoplastics. However, achieving proper welding of advanced engineering thermoplastics through the conventional FSW route is very challenging due to the necessity of high heat. Therefore, in the present study, a novel self-heated FSW tool was used to join advance engineering thermoplastic. Tool rotational speeds were varied at different levels keeping a constant tool traverse speed. The heat at the tool pin and material responses to tool for different rotational speeds were measured. Scanning electron microscopy revealed good weld surfaces with excellent material flow for welding with high tool rotational speed. A maximum ultimate tensile strength of about 29 MPa was achieved for a specimen welded at a tool rotational speed of 1450 rpm. Microhardness distribution of the welded specimens showed that the microhardness at the stir zone reduced with the increase of tool rotational speed due to reduction in crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Peet, Boeing: The Boeing Company: General Information (Boeing Co., Chicago, 2006). https://www.boeing.com/company/general-info/.

  2. F. Lambiase and D.C. Ko, Mater. Des. 107, 341 (2016).

    Article  Google Scholar 

  3. S.M. Kurtz and J.N. Devine, Biomaterials 28, 4845 (2007).

    Article  Google Scholar 

  4. J.M. Toth, M. Wang, B.T. Estes, J.L. Scifert, H.B. Seim, and A.S. Turner, Biomaterials 27, 324 (2006).

    Article  Google Scholar 

  5. D. Pokorný, P. Fulín, M. Slouf, D. Jahoda, I. Landor, and A. Sosna, Acta Chir. Orthop. Traumatol. Cech. 77, 470 (2010).

    Google Scholar 

  6. H.B. Skinner, Clin. Orthop. Relat. Res. 265, 224 (1988).

    Google Scholar 

  7. R. Stefini, G. Esposito, B. Zanotti, C. Iaccarino, M.M. Fontanella, and F. Servadei, Surg. Neurol. Int. 4, 12 (2013).

    Article  Google Scholar 

  8. J. Comyn, L. Mascia, G. Xiao, and B.M. Parker, Int. J. Adhes. Adhes. 16, 97 (1996).

    Article  Google Scholar 

  9. N. Amanat, C. Chaminade, J. Grace, D.R. McKenzie, and N.L. James, Mater. Des. 31, 4823 (2010).

    Article  Google Scholar 

  10. W. Tao, X. Su, H. Wang, Z. Zhang, H. Li, and J. Chen, J. Manuf. Process. 37, 196 (2019).

    Article  Google Scholar 

  11. W. Ma, X. Zhan, H. Yang, H. Bu, Y. Li, and F. Wang, J. Polym. Eng. 40, 432 (2020).

    Article  Google Scholar 

  12. D. Brassard, M. Dubé, and J.R. Tavares, Compos. Part B 165, 779 (2019).

    Article  Google Scholar 

  13. J.V. Jose and K. Panneerselvam, Mater. Today Proc. 39, 1639 (2020).

    Google Scholar 

  14. H. Aghajani Derazkola and A. Simchi, J. Mech. Behav. Biomed. Mater. 79, 246 (2018).

    Article  Google Scholar 

  15. P. Maji, S.K. Ghosh, R.K. Nath, and R. Karmakar, J. Braz. Soc. Mech. Sci. Eng. 42, 191 (2020).

    Article  Google Scholar 

  16. H.A. Derazkola and M. Elyasi, J. Manuf. Process. 35, 88 (2018).

    Article  Google Scholar 

  17. A.K. Lakshminarayanan, M. Suresh, and M. Sibi Varshan, JOM 67, 1032 (2015).

    Article  Google Scholar 

  18. Y. Bozkurt, Mater. Des. 35, 440 (2012).

    Article  Google Scholar 

  19. M. Elyasi and H.A. Derazkola, Int. J. Adv. Manuf. Technol. 97, 1445 (2018).

    Article  Google Scholar 

  20. H. Aghajani Derazkola and A. Simchi, Sci. Technol. Weld. Join. 23, 209 (2018).

    Article  Google Scholar 

  21. H. Ahmed, M.J.L. van Tooren, J. Justice, R. Harik, A. Kidane, and A.P. Reynolds, J. Thermoplast. Compos. Mater. 32, 1242 (2019).

    Article  Google Scholar 

  22. F. Lambiase, H.A. Derazkola, and A. Simchi, Materials (Basel) 13, 2291 (2020).

    Article  Google Scholar 

  23. A. Bagheri, T. Azdast, and A. Doniavi, Mater. Des. 43, 402 (2013).

    Article  Google Scholar 

  24. E. Azarsa and A. Mostafapour, J. Manuf. Process. 16, 149 (2014).

    Article  Google Scholar 

  25. P.N. Banjare, P. Sahlot, and A. Arora, J. Mater. Process. Technol. 239, 83 (2017).

    Article  Google Scholar 

  26. A. Moochani, H. Omidvar, S.R. Ghaffarian, and S.M. Goushegir, Weld. World 63, 181 (2019).

    Article  Google Scholar 

  27. B. Vijendra and A. Sharma, J. Manuf. Process. 20, 234 (2015).

    Article  Google Scholar 

  28. R.K. Nath, P. Maji, and J.D. Barma, J. Braz. Soc. Mech. Sci. Eng. 41, 1 (2019).

    Article  Google Scholar 

  29. H. Aghajani Derazkola and A. Simchi, Thin-Walled Struct. 157, (2020).

    Article  Google Scholar 

  30. ASTM-E2015-04, Standard Guide for Preparation of Plastics and Polymeric Specimens for Microstructural Examination (ASTM International, West Conshohocken, 2006).

  31. ASTM-D638-14, Standard Test Method for Tensile Properties of Plastics (ASTM International, West Conshohocken, 2014).

  32. M. Petersson, Proc. Inst. Mech. Eng. Part C 216, 259 (2002).

    Article  Google Scholar 

  33. P. Talebizadehsardari, F. Musharavati, A. Khan, T.A. Sebaey, A. Eyvaziana, and H.A. Derazkola, Mater. Today Commun. 26, (2021).

    Article  Google Scholar 

  34. H. Aghajani Derazkola, A. Eyvazian, and A. Simchi, J. Manuf. Process. 50, 68 (2020).

    Article  Google Scholar 

  35. H.A. Derazkola, F. Khodabakhshi, and A. Simchi, Sci. Technol. Weld. Join. 23, 35 (2018).

    Article  Google Scholar 

  36. A. Eyvazian, A. Hamouda, F. Tarlochan, H.A. Derazkola, and F. Khodabakhshi, J. Mater. Res. Technol. 9, 3767 (2020).

    Article  Google Scholar 

  37. H. Aghajani Derazkola and F. Khodabakhshi, Int. J. Adv. Manuf. Technol. 100, 2401 (2019).

    Article  Google Scholar 

  38. H.A. Derazkola, A. Eyvazian, and A. Simchi, Mater. Today Commun. 22, (2020).

    Article  Google Scholar 

  39. F. Khodabakhshi, H.A. Derazkola, and A.P. Gerlich, J. Mater. Sci. 55, 13438 (2020).

    Article  Google Scholar 

  40. P. Upadhyay and A.P. Reynolds, JOM 67, 1022 (2015).

    Article  Google Scholar 

  41. M.F. Talbott, G.S. Springer, and L.A. Berglund, J. Compos. Mater. 21, 1056 (1987).

    Article  Google Scholar 

  42. H. Aghajani Derazkola and A. Simchi, J. Manuf. Process. 34, 412 (2018).

    Article  Google Scholar 

  43. H. Aghajani Derazkola, A. Simchi, and F. Lambiase, Polym. Test. 79, (2019).

    Article  Google Scholar 

  44. A. Eyvazian, A.M. Hamouda, H. Aghajani Derazkola, and M. Elyasi, Proc. Inst. Mech. Eng. Part B 234, 773 (2020).

    Article  Google Scholar 

  45. M. Moreno-Moreno, Y. Macea Romero, H. Rodríguez Zambrano, N.C. Restrepo-Zapata, C.R.M. Afonso, and J. Unfried-Silgado, Int. J. Adv. Manuf. Technol. 97, 2489 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Kanti Nath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, R.K., Maji, P. & Barma, J.D. Joining of Advance Engineering Thermoplastic Using Novel Self-Heated FSW Tool. JOM 73, 1774–1785 (2021). https://doi.org/10.1007/s11837-021-04686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04686-y

Navigation