Skip to main content
Log in

Flexible ZnO Nanoparticle-Poly(methyl methacrylate) Hybrid Films and Their Ultraviolet Shielding Behaviors

  • Zinc Oxide Nanotechnology
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Flexible hybrid films are finding increasing applications in functional devices. In this work, transparent ZnO nanoparticle and poly(methyl methacrylate) (PMMA) hybrid films are made for ultraviolet (UV) shielding with significantly higher ZnO contents than what has been reported. The tensile strength increases with the ZnO nanoparticle volume percent, from ~ 10 MPa for the pure PMMA samples to ~ 24 MPa for the 20 vol.% ZnO samples, a 150% increase. The elongation at break also increases with the ZnO content increase until 10 vol.% (a 67% increase), after which the elongation at break stays constant. All the ZnO-PMMA films show UV absorption at ~ 365 nm wavelength, with an increasing degree for higher ZnO content samples and a corresponding light transmittance decrease at longer wavelengths. Long-term UV irradiation leads to a reduction in tensile strength and elongation at break, along with lower UV shielding performance. This work proposes that the optimal ZnO content is 5–10 vol.% for the overall UV shielding performance while maintaining good mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Yamani, R. Berenguer, A. Benyoucef, and E. Morallon, J. Therm. Anal. Calorim. 135, 2089 (2019).

    Article  Google Scholar 

  2. K.S. Narayan, A.G. Manoj, J. Nanda, and D.D. Sarma, Appl. Phys. Lett. 74, 871 (1999).

    Article  Google Scholar 

  3. Y. Tu, L. Zhou, Y.Z. Jin, C. Gao, Z.Z. Ye, Y.F. Yang, and Q.L. Wang, J. Mater. Chem. 20, 1594 (2010).

    Article  Google Scholar 

  4. X. Xiao, X. Liu, F. Chen, D. Fang, C. Zhang, L. Xia, W. Xu, and A.C.S. Appl, Mater. Interfaces 7, 21326 (2015).

    Article  Google Scholar 

  5. Z.T. Zhao, A.R. Mao, W.W. Gao, and H. Bai, Compos. Commun. 10, 157 (2018).

    Article  Google Scholar 

  6. Y.A. Aggour and M.S. Aziz, Polym. Test. 19, 261 (2000).

    Article  Google Scholar 

  7. T. Caykara and O. Guven, Polym. Degrad. Stab. 65, 225 (1999).

    Article  Google Scholar 

  8. K. Hareesh, A.K. Pandey, Y. Sangappa, R. Bhat, A. Venkataraman, and G. Sanjeev, Nucl. Instrum. Methods Phys. Res. B 295, 61 (2013).

    Article  Google Scholar 

  9. H. Zhao and R.K.Y. Li, Polym. 47, 3207 (2006).

    Article  Google Scholar 

  10. S. Eve and J. Mohr, Procedia Eng. 1, 237 (2009).

    Article  Google Scholar 

  11. P. Gijsman, G. Meijers, and G. Vitarelli, Polym. Degrad. Stab. 65, 433 (1999).

    Article  Google Scholar 

  12. M.E. Calvo, J.R.C. Smirnov, and H. Miguez, J. Polym. Sci. Pol. Phys. 50, 945 (2012).

    Article  Google Scholar 

  13. T. Chen, W.H. Kong, Z.W. Zhang, L. Wang, Y. Hu, G.Y. Zhu, R.P. Chen, L.B. Ma, W. Yan, Y.R. Wang, J. Liu, and Z. Jin, Nano Energy 54, 17 (2018).

    Article  Google Scholar 

  14. S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, and S.J. Chua, J. Appl. Phys. 98, 013505 (2005).

    Article  Google Scholar 

  15. Y.S. Luo, J.P. Yang, X.J. Dai, Y. Yang, and S.Y. Fu, J. Phys. Chem. C 113, 9406 (2009).

    Article  Google Scholar 

  16. A. Singhal, K.A. Dubey, Y.K. Bhardwaj, D. Jain, S. Choudhury, and A.K. Tyagi, RSC Adv. 3, 20913 (2013).

    Article  Google Scholar 

  17. T. KyprianidouLeodidou, P. Margraf, W. Caseri, U.W. Suter, and P. Walther, Polym. Adv. Technol. 8, 505 (1997).

    Article  Google Scholar 

  18. Y.Q. Li, S.Y. Fu, and Y.W. Mai, Polym. 47, 2127 (2006).

    Article  Google Scholar 

  19. W.H.M. Abdelraheem, X. He, X. Duan, and D.D. Dionysiou, J. Hazard. Mater. 282, 233 (2015).

    Article  Google Scholar 

  20. T. Cao, K. Xu, G. Chen, and C.Y. Guo, RSC Adv. 3, 6282 (2013).

    Article  Google Scholar 

  21. Y. Wang, J. Su, T. Li, P. Ma, H. Bai, Y. Xie, M. Chen, and W. Dong, ACS Appl. Mater. Interfaces. 9, 36281 (2017).

    Article  Google Scholar 

  22. C. Coelho, M. Hennous, V. Verney, and F. Leroux, RSC Adv. 2, 5430 (2012).

    Article  Google Scholar 

  23. G.M. Chen, S.H. Liu, S.F. Zhang, and Z.N. Qi, Macromol. Rapid Commun. 21, 746 (2000).

    Article  Google Scholar 

  24. X.H. Dai, J. Xu, X.L. Guo, Y.L. Lu, D.Y. Shen, N. Zhao, X.D. Luo, and X.L. Zhang, Macromol. 37, 5615 (2004).

    Article  Google Scholar 

  25. C. Yuan, J. Zhang, G. Chen, and J. Yang, Chem. Commun. 47, 899 (2011).

    Article  Google Scholar 

  26. R.F. Gibson, Compos. Struct. 92, 2793 (2010).

    Article  Google Scholar 

  27. J.C. Natterodt, J. Sapkota, E.J. Foster, and C. Weder, Biomacromol 18, 517 (2017).

    Article  Google Scholar 

  28. H. Ren, Y. Zhou, M. He, R. Xu, B. Ding, X. Zhong, Y. Tong, L. Fan, Z. Cai, H. Shen, and Y. Huang, New J. Chem. 42, 3069 (2018).

    Article  Google Scholar 

  29. D. Morselli, F. Bondioli, A.S. Luyt, T.H. Mokhothu, and M. Messori, J. Appl. Polym. Sci. 128, 2525 (2013).

    Article  Google Scholar 

  30. D. Morselli, F. Bondioli, M. Sangermano, and M. Messori, Polym. 53, 283 (2012).

    Article  Google Scholar 

  31. D. Sun, H.J. Sue, and N. Miyatake, J. Phys. Chem. C 112, 16002 (2008).

    Article  Google Scholar 

  32. S. Li, M.S. Toprak, Y.S. Jo, J. Dobson, D.K. Kim, and M. Muhammed, Adv. Mater. 19, 4347 (2007).

    Article  Google Scholar 

  33. Y. Zhang, X. Wang, Y. Liu, S. Song, and D. Liu, J. Mater. Chem. 22, 11971 (2012).

    Article  Google Scholar 

  34. H.M. Xiong, D.P. Liu, Y.Y. Xia, and J.S. Chen, Chem. Mater. 17, 3062 (2005).

    Article  Google Scholar 

  35. D.-P. Liu, G.-D. Li, Y. Su, and J.-S. Chen, Angew. Chem. Int. 118, 7530 (2006).

    Google Scholar 

  36. D.P. Liu, G.D. Li, J.X. Li, X.H. Li, and J.S. Chen, Chem. Commun. 40, 4131 (2007).

    Article  Google Scholar 

  37. X.L. Xie, Q.X. Liu, R.K.Y. Li, X.P. Zhou, Q.X. Zhang, Z.Z. Yu, and Y.W. Mai, Polym. 45, 6665 (2004).

    Article  Google Scholar 

  38. C.M. Chana, J. Wub, J.X. Lia, and Y.K. Cheunga, Polym. 43, 2981 (2002).

    Article  Google Scholar 

  39. C.L. Wua, M.Q. Zhangb, M.Z. Rongb, and K. Friedrichc, Compos. Sci. Technol. 62, 1327 (2002).

    Article  Google Scholar 

  40. P.H.T. Vollenberg and D. Heikens, Polym. 30, 1656 (1989).

    Article  Google Scholar 

  41. B. J. Ash, J. Stone, D. F. Rogers, L. S. Schadler, R. W. Siegel, B. C. Benicewicz, and T. Apple, MRS Proc., 661 (2011).

  42. M.Z. Rong, M.Q. Zhang, S.L. Pan, B. Lehmann, and K. Friedrich, Polym. Int. 53, 176 (2004).

    Article  Google Scholar 

  43. A. Anžlovar, Z. Crnjak Orel, M. Žigon, Mechanical properties of PMMA/ZnO nanocomposites. Proceedings of the ECCM15 - 15TH European Conference On Composite Materials (2012); Venice, Italy.

  44. E.A. Meulenkamp, J. Phys. Chem. B 102, 5566 (1998).

    Article  Google Scholar 

  45. Y.F. Lin, K. Lu, and R. Davis, Langmuir 35, 5855 (2019).

    Article  Google Scholar 

  46. H.A. Afifi, Polym.-Plast. Technol. Eng. 42, 193 (2003).

    Article  Google Scholar 

  47. X.F. Yao, D.L. Liu, and H.Y. Yeh, J. Appl. Polym. Sci. 106, 3253 (2007).

    Article  Google Scholar 

  48. R.L. Huchzermeyer and T.H. Becker, Exp. Tech. 42, 671 (2018).

    Article  Google Scholar 

  49. C.P. Li, C.H. Wu, K.H. Wei, J.T. Sheu, J.Y. Huang, U.S. Jeng, and K.S. Liang, Adv. Funct. Mater. 17, 2283 (2007).

    Article  Google Scholar 

  50. V. Gilja, I. Vrban, V. Mandić, M. Žic, and Z. Hrnjak-Murgić, Polym. 10, 940 (2018).

    Article  Google Scholar 

  51. A. Di Mauro, M. Cantarella, G. Nicotra, G. Pellegrino, A. Gulino, M.V. Brundo, V. Privitera, and G. Impellizzeri, Sci. Rep. 7, 40895 (2017).

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge the financial support from National Science Foundation under Grant No. CMMI-1661564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Rau, A., Yang, N. et al. Flexible ZnO Nanoparticle-Poly(methyl methacrylate) Hybrid Films and Their Ultraviolet Shielding Behaviors. JOM 73, 432–440 (2021). https://doi.org/10.1007/s11837-020-04454-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04454-4

Navigation