Skip to main content
Log in

Evolution of Microstructure, Residual Stress, and Tensile Properties of Additively Manufactured Stainless Steel Under Heat Treatments

  • Additive Manufacturing for Energy Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study investigated the microstructure, residual stress, and tensile properties of directed energy deposited stainless steel 316L (SS316L) under thermal annealing. Microstructure characterization shows the as-printed sample has laser-generated patterns where dendritic structure is observed at the edge of the patterns and cellular structure dominates the interior region. The thermal annealing at 983 and 1093°C effectively removes the dendritic/cellular structures. Synchrotron x-ray diffraction reveals that the as-printed SS316L exhibits compressive residual stress of − 197.4 MPa, which is greatly relieved to − 53.8 MPa after annealing at 1093°C. The room temperature tensile testing indicates that the yield strength and ultimate tensile strength drop from 378 MPa and 502 MPa in the as-printed sample to 258 MPa and 446 MPa in the annealed samples (1093°C), respectively. Our study provides insights into the relationship among microstructure, residual stress, and tensile properties of laser additive manufactured SS316L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Liu and Y.C. Shin, Mater. Des. 164, 107552 (2019).

    Article  Google Scholar 

  2. K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina, Acta Mater. 60, 2229 (2012).

    Article  Google Scholar 

  3. C. Qiu, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth, and M.M. Attallah, J. Alloys Compd. 629, 351 (2015).

    Article  Google Scholar 

  4. X. Zhang, Y. Chen, and F. Liou, Sci. Technol. Weld. Join. 24, 504 (2019).

    Article  Google Scholar 

  5. R.M. Mahamood and E.T. Akinlabi, Mater. Des. 84, 402 (2015).

    Article  Google Scholar 

  6. M.S.F. De Lima and S. Sankaré, Mater. Des. 55, 526 (2014).

    Article  Google Scholar 

  7. X. Zhang, W. Li, X. Chen, W. Cui, and F. Liou, Int. J. Adv. Manuf. Technol. 95, 3335 (2018).

    Article  Google Scholar 

  8. W. Cui, S. Karnati, X. Zhang, E. Burns, and F. Liou, Entropy 21, 2 (2019).

    Article  Google Scholar 

  9. X. Zhang, T. Pan, W. Li, and F. Liou, JOM 71, 946 (2019).

    Article  Google Scholar 

  10. M.J.K. Lodhi, K.M. Deen, M.C. Greenlee-Wacker, and W. Haider, Addit. Manuf. 27, 8 (2019).

    Google Scholar 

  11. M. Mukherjee, Materialia 7, 100359 (2019).

    Article  Google Scholar 

  12. K. Zhang, S. Wang, W. Liu, and X. Shang, Mater. Des. 55, 104 (2014).

    Article  Google Scholar 

  13. M. Ma, Z. Wang, D. Wang, and X. Zeng, Opt. Laser Technol. 45, 209 (2013).

    Article  Google Scholar 

  14. M. Chimmat and D. Srinivasan, Procedia Struct. Integr. 14, 746 (2019).

    Article  Google Scholar 

  15. A. Yadollahi, N. Shamsaei, S.M. Thompson, and D.W. Seely, Mater. Sci. Eng., A 644, 171 (2015).

    Article  Google Scholar 

  16. D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, J. Yao, K. Xiao, and X. Li, Electrochim. Acta 276, 293 (2018).

    Article  Google Scholar 

  17. K. Benarji, Y. Ravi Kumar, A. N. Jinoop, C. P. Paul, and K. S. Bindra, Met. Mater. Int. (2020).

  18. C. Zhou, S. Hu, Q. Shi, H. Tao, Y. Song, J. Zheng, P. Xu, and L. Zhang, Corros. Sci. 164, 108353 (2020).

    Article  Google Scholar 

  19. B.H. Toby and R.B. Von Dreele, J. Appl. Crystallogr. 46, 544 (2013).

    Article  Google Scholar 

  20. B.H. Toby, Powder Diffr. 21, 67 (2006).

    Article  Google Scholar 

  21. W. Reimers, M. Broda, G. Brusch, D. Dantz, K.-D. Liss, A. Pyzalla, T. Schmackers, and T. Tschentscher, J. Nondestruct. Eval. 17, 129 (1998).

    Google Scholar 

  22. B. Clausen, T. Lorentzen, M.A.M. Bourke, and M.R. Daymond, Mater. Sci. Eng., A 259, 17 (1999).

    Article  Google Scholar 

  23. M.H.R.P. Schneider, T. Poeste, and H. Freydank, in Measurement of Residual Stress in Materials Using Neutrons Proceedings of a Technical Meeting Held in Vienna IAEA (2005), pp. 61–70.

  24. U. Savitha, G.J. Reddy, A. Venkataramana, A.A. Gokhale, and M. Sundararaman, Trans. Indian Inst. Met. 68, 1017 (2015).

    Article  Google Scholar 

  25. T. Amine, J.W. Newkirk, and F. Liou, Appl. Therm. Eng. 73, 500 (2014).

    Article  Google Scholar 

  26. A.L. Schaeffler, Met Prog. 56, 680 (1949).

    Google Scholar 

  27. Z. Wang, T.A. Palmer, and A.M. Beese, Acta Mater. 110, 226 (2016).

    Article  Google Scholar 

  28. M. Ma, Z. Wang, and X. Zeng, Mater. Sci. Eng., A 685, 265 (2017).

    Article  Google Scholar 

  29. M. Akbari and R. Kovacevic, Addit. Manuf. 23, 487 (2018).

    Google Scholar 

  30. X. Wang, J.A. Muñiz-Lerma, O. Sánchez-Mata, M.A. Shandiz, and M. Brochu, Mater. Sci. Eng., A 736, 27 (2018).

    Article  Google Scholar 

  31. T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka, and E. Chlebus, Mater. Sci. Eng., A 718, 64 (2018).

    Article  Google Scholar 

  32. J.R. Davis, ed., Stainless steels (ASM international, 1994).

  33. D. Benjamin and C.W. Kirkpatrick, Properties and selection: stainless steels, tool materials and special purpose metals (ASM International, 1980).

  34. Y. Zhong, L.-E. Rännar, L. Liu, A. Koptyug, S. Wikman, J. Olsen, D. Cui, and Z. Shen, J. Nucl. Mater. 486, 234 (2017).

    Article  Google Scholar 

  35. Y.-C. Huang, S.-Y. Chang, and C.-H. Chang, Thin Solid Films 517, 4857 (2009).

    Article  Google Scholar 

  36. J.H. Moon, S.M. Baek, S.G. Lee, Y. Seong, A. Amanov, S. Lee, and H.S. Kim, Mater. Res. Lett. 7, 97 (2019).

    Article  Google Scholar 

  37. K. Ren, Y. Chew, J.Y.H. Fuh, Y.F. Zhang, and G.J. Bi, Mater. Des. 162, 80 (2019).

    Article  Google Scholar 

  38. X. Lu, X. Lin, M. Chiumenti, M. Cervera, Y. Hu, X. Ji, L. Ma, H. Yang, and W. Huang, Addit. Manuf. 26, 166 (2019).

    Google Scholar 

  39. T. Mukherjee, J.S. Zuback, W. Zhang, and T. DebRoy, Comput. Mater. Sci. 143, 325 (2018).

    Article  Google Scholar 

  40. A. Zakay and E. Aghion, JOM 71, 1150 (2019).

    Article  Google Scholar 

  41. V. Cruz, Q. Chao, N. Birbilis, D. Fabijanic, P.D. Hodgson, and S. Thomas, Corros. Sci. 164, 108314 (2020).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Idaho National Laboratory Directed Research and Development (LDRD) program under the Department of Energy (DOE) Idaho Operations Office under contract DE-AC07-051D14517. The use of the beamline in the Advanced Photon Source was supported by the Argonne National Laboratory under contract DE-AC02-06CH11357, operated by the US DOE, Office of Science, Office of Basic Energy Science. We also acknowledge the US DOE, Office of Nuclear Energy, Nuclear Science User Facility (NSUF) under contract DE-AC07-051D14517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Sun.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., McMurtrey, M.D., Wang, L. et al. Evolution of Microstructure, Residual Stress, and Tensile Properties of Additively Manufactured Stainless Steel Under Heat Treatments. JOM 72, 4167–4177 (2020). https://doi.org/10.1007/s11837-020-04433-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04433-9

Navigation