Skip to main content
Log in

Tensile Properties of Boron Nitride-Carbon Nanosheet-Reinforced Aluminum Nanocomposites Using Molecular Dynamics Simulation

  • Metal and Polymer Matrix Composites
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The recently discovered hybrid boron nitride-carbon (BN-C) nanostructures have triggered enormous attention in the research on innovative nanocomposite design. Molecular dynamics simulation is conducted in this study to analyze the load-carrying capacity of aluminum nanocomposites reinforced with different types of BN-C nanosheets. By adopting a realistic loading condition in actual composites, the study found that the mechanical performance of the nanocomposite is predominantly affected by the interfacial mechanics between the nanosheet and the inner surface of the matrix. The computed Young’s modulus of Al matrix reinforced by graphene, BN and BN-C nanofiber are 74.61 GPa, 74.65 GPa and 76.48 GPa respectively by using the realistic loading condition. The tensile loading behavior of the nanocomposite is also strongly dependent on the angle of recline of the nanosheet relative to the loading direction. The nanocomposite with a nanofiber reinforcement aligned at 0° to the principal loading axis exhibited maximum tensile resistance compared to that of nanofiber reinforcements aligned at 15° or 30°. The maximum load-carrying capacity under tension decreases with increasing temperature. However, increasing the BN concentration in the reinforcing nanosheet improves the thermal stability of the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Google Scholar 

  2. H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, and D. Golberg, Nano Lett. 10, 5049 (2010).

    Google Scholar 

  3. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).

    Google Scholar 

  4. C.H. Wong and V. Vijayaraghavan, Mater. Sci. Eng. A 556, 420 (2012).

    Google Scholar 

  5. Y. Chen, J. Zou, S.J. Campbell, and G.L. Caer, Appl. Phys. Lett. 84, 2430 (2004).

    Google Scholar 

  6. T. Han, Y. Luo, and C. Wang, J. Phys. D 47, 025303 (2014).

    Google Scholar 

  7. J. Che, M. Jing, D. Liu, K. Wang, and Q. Fu, Compos. Part A 112, 32 (2018).

    Google Scholar 

  8. B. Zhong, Y. Cheng, M. Wang, Y. Bai, X. Huang, Y. Yu, H. Wang, and G. Wen, Compos. Part A 112, 515 (2018).

    Google Scholar 

  9. T. Li, X. Jiao, T. You, F. Dai, P. Zhang, F. Yu, L. Hu, L. Ding, L. Zhang, Z. Wen, and Y. Wu, Ceram. Int. 45, 4283 (2019).

    Google Scholar 

  10. A. Merlo, V.R.S.S. Mokkapati, S. Pandit, and I. Mijakovic, Biomater. Sci.-UK 6, 2298 (2018).

    Google Scholar 

  11. Y. Fan, Z. Yang, W. Hua, D. Liu, T. Tao, M.M. Rahman, W. Lei, S. Huang, and Y. Chen, Adv. Energy Mater. 7, 1602380 (2017).

    Google Scholar 

  12. K.Q. Xiao, L.C. Zhang, and I. Zarudi, Compos. Sci. Technol. 67, 177 (2007).

    Google Scholar 

  13. L.C. Zhang, I. Zarudi, and K.Q. Xiao, Wear 261, 806 (2006).

    Google Scholar 

  14. K.Q. Xiao and L.C. Zhang, J. Mater. Sci. 39, 4481 (2004).

    Google Scholar 

  15. M.W. Ahmad, B. Dey, G. Sarkhel, D.S. Bag, and A. Choudhury, Mater. Chem. Phys. 223, 426 (2019).

    Google Scholar 

  16. M. Basso, W. Azoti, H. Elmarakbi, and A. Elmarakbi, J. Appl. Polym. Sci. 136, 47664 (2019).

    Google Scholar 

  17. J. Zhang and X. Peng, Mater. Chem. Phys. 198, 250 (2017).

    Google Scholar 

  18. V. Guerra, C. Wan, and T. McNally, Prog. Mater Sci. 100, 170 (2019).

    Google Scholar 

  19. J. Zhang and C. Wang, J. Phys. D Appl. Phys. 49, 155305 (2016).

    Google Scholar 

  20. J. Zhang and C. Wang, Comput. Mater. Sci. 127, 270 (2017).

    Google Scholar 

  21. H. Alsanat, S. Gunalan, H. Guan, P. Keerthan, and J. Bull, Thin Walled Struct. 141, 460 (2019).

    Google Scholar 

  22. F. Khodabakhshi and A.P. Gerlich, Mater. Sci. Eng. A Struct. 759, 688 (2019).

    Google Scholar 

  23. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999).

    Google Scholar 

  24. M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta, Philos. Mag. 88, 1723 (2008).

    Google Scholar 

  25. A. KinacI, J.B. Haskins, C. Sevik, and T. ÇağIn, Phys. Rev. B 86, 115410 (2012).

    Google Scholar 

  26. J. Tersoff, Phys. Rev. B 39, 5566 (1989).

    Google Scholar 

  27. K.N. Kudin, G.E. Scuseria, and B.I. Yakobson, Phys. Rev. B 64, 235406 (2001).

    Google Scholar 

  28. B.K. Choi, G.H. Yoon, and S. Lee, Compos. Part B 91, 119 (2016).

    Google Scholar 

  29. Z. Cong and S. Lee, Compos. Struct. 194, 80 (2018).

    Google Scholar 

  30. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Google Scholar 

  31. Y.G. Wang, Z.X. Jiang, and L.L. Wang, Strain 49, 335 (2013).

    Google Scholar 

  32. M. Bokdam, G. Brocks, M.I. Katsnelson, and P.J. Kelly, Phys. Rev. B 90, 085415 (2014).

    Google Scholar 

  33. T. Olsen and K.S. Thygesen, Phys. Rev. B 87, 075111 (2013).

    Google Scholar 

  34. R. Rezaei, Comput. Mater. Sci. 151, 181 (2018).

    Google Scholar 

  35. N. Silvestre, B. Faria, and J.N. Canongia Lopes, Compos. Sci. Technol. 90, 16 (2014).

    Google Scholar 

  36. V. Vijayaraghavan and L. Zhang, Comput. Mater. Sci. 159, 376 (2019).

    Google Scholar 

  37. H. Zhao, K. Min, and N.R. Aluru, Nano Lett. 9, 3012 (2009).

    Google Scholar 

  38. T. Mori and K. Tanaka, Acta Metall. Mater. 21, 571 (1973).

    Google Scholar 

  39. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi, ACS Nano 4, 2979 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangchi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayaraghavan, V., Zhang, L. Tensile Properties of Boron Nitride-Carbon Nanosheet-Reinforced Aluminum Nanocomposites Using Molecular Dynamics Simulation. JOM 72, 2305–2311 (2020). https://doi.org/10.1007/s11837-020-04031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04031-9

Navigation