Skip to main content
Log in

Mechanical characteristics and deformation mechanism of boron nitride nanotube reinforced metal matrix nanocomposite based on molecular dynamics simulations

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Boron nitride nanotubes (BNNTs) have been utilized to strengthen various engineering materials especially metal matrix composites thanks to their extraordinary high tensile strength, elastic modulus, and failure strain. In this paper, single- and multi-walled BNNTs were therefore used to combine with aluminum (Al) metal matrix. Mechanical characteristics and deformation mechanism of nanocomposites reinforced with long (continuous) and short (discontinuous) BNNTs were then investigated for different loadings including uniaxial tension and compression and different boundary conditions based on molecular dynamics simulations. It was found that long BNNTs remarkably improved tensile mechanical properties of the matrix and effectively enhanced elastic modulus and strength of the nanocomposites by 82% and 79.4%, respectively. They could provide effective barriers to propagation path of dislocations formed inside the matrix. Diameter and wall number of the reinforcement did not leave considerable impacts on the nanocomposite behavior while its atomic fraction remarkably influenced the material response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. C. Zhi, Y. Bando, C. Tang, and D. Golberg: Boron nitride nanotubes. Mater. Sci. Eng., R 70, 92 (2010).

    Article  CAS  Google Scholar 

  2. M. Santosh, P.K. Maiti, and A.K. Sood: Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes. J. Nanosci. Nanotechnol. 9, 5425 (2009).

    Article  CAS  Google Scholar 

  3. A.P. Suryavanshi, M-F. Yu, J. Wen, C. Tang, and Y. Bando: Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 84, 2527 (2004).

    Article  CAS  Google Scholar 

  4. N.G. Chopra and A. Zettl: Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105, 297 (1998).

    Article  CAS  Google Scholar 

  5. M-L. Liao, Y-C. Wang, S-P. Ju, T-W. Lien, and L-F. Huang: Deformation behaviors of an armchair boron-nitride nanotube under axial tensile strains. J. Appl. Phys. 110, 054310 (2011).

    Article  CAS  Google Scholar 

  6. M-L. Liao, T-W. Lian, and S-P. Ju: Tensile and compressive behaviours of a boron nitride nanotube: Temperature effects. Mater. Sci. Forum 700, 125 (2012).

    Article  CAS  Google Scholar 

  7. D. Golberg, Y. Bando, C.C. Tang, and C.Y. Zhi: Boron nitride nanotubes. Adv. Mater. 19, 2413 (2007).

    Article  CAS  Google Scholar 

  8. D. Lahiri, A. Hadjikhani, C. Zhang, T. Xing, L.H. Li, Y. Chen, and A. Agarwal: Boron nitride nanotubes reinforced aluminum composites prepared by spark plasma sintering: Microstructure, mechanical properties and deformation behavior. Mater. Sci. Eng., A 574, 149 (2013).

    Article  CAS  Google Scholar 

  9. Y. Chen, J. Zou, S.J. Campbell, and G.L. Caer: Boron nitride nanotubes: Pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430 (2004).

    Article  CAS  Google Scholar 

  10. C. Zhi, Y. Bando, C. Tang, S. Honda, H. Kuwahara, and D. Golberg: Boron nitride nanotubes/polystyrene composites. J. Mater. Res. 21, 2794 (2006).

    Article  CAS  Google Scholar 

  11. C. Zhi, Y. Bando, T. Terao, C. Tang, H. Kuwahara, and D. Golberg: Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv. Funct. Mater. 19, 1857 (2009).

    Article  CAS  Google Scholar 

  12. C. Zhi, Y. Bando, C. Tang, H. Kuwahara, and D. Golberg: Grafting boron nitride nanotubes: From polymers to amorphous and graphitic carbon. J. Phys. Chem. C 111, 1230 (2007).

    Article  CAS  Google Scholar 

  13. J. Ravichandran, A.G. Manoj, J. Liu, I. Manna, and D.L. Carroll: A novel polymer nanotube composite for photovoltaic packaging applications. Nanotechnology 19, 085712 (2008).

    Article  CAS  Google Scholar 

  14. C.Y. Zhi, Y. Bando, C.C. Tang, Q. Huang, and D. Golberg: Boron nitride nanotubes: Functionalization and composites. J. Mater. Chem. 18, 3900 (2008).

    Article  CAS  Google Scholar 

  15. C. Zhi, L. Zhang, Y. Bando, T. Terao, C. Tang, H. Kuwahara, and D. Golberg: New crystalline phase induced by boron nitride nanotubes in polyaniline. J. Phys. Chem. C 112, 17592 (2008).

    Article  CAS  Google Scholar 

  16. C.Y. Zhi, Y. Bando, W.L. Wang, C.C. Tang, H. Kuwahara, and D. Golberg: Mechanical and thermal properties of polymethyl methacrylate–BN nanotube composites. J. Nanomater. 2008, 642036 (2008).

    Article  Google Scholar 

  17. D. Lahiri, F. Rouzaud, T. Richard, A.K. Keshri, S.R. Bakshi, L. Kos, and A. Agarwal: Boron nitride nanotube reinforced polylactide–polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater. 6, 3524 (2010).

    Article  CAS  Google Scholar 

  18. C. Zhi, Y. Bando, C. Tang, S. Honda, K. Sato, H. Kuwahara, and D. Golberg: Characteristics of boron nitride nanotube–polyaniline composites. Angew. Chem., Int. Ed. 44, 7929 (2005).

    Article  CAS  Google Scholar 

  19. N.P. Bansal, J.B. Hurst, and S.R. Choi: Boron nitride nanotubes-reinforced glass composites. J. Am. Ceram. Soc. 89, 388 (2006).

    Article  CAS  Google Scholar 

  20. Q. Huang, Y. Bando, X. Xu, T. Nishimura, C. Zhi, C. Tang, F. Xu, L. Gao, and D. Golberg: Enhancing superplasticity of engineering ceramics by introducing BN nanotubes. Nanotechnology 18, 485706 (2007).

    Article  CAS  Google Scholar 

  21. M. Griebel and J. Hamaekers: Molecular dynamics simulations of boron–nitride nanotubes embedded in amorphous Si–B–N. Comput. Mater. Sci. 39, 502 (2007).

    Article  CAS  Google Scholar 

  22. D. Lahiri, V. Singh, A.P. Benaduce, S. Seal, L. Kos, and A. Agarwal: Boron nitride nanotube reinforced hydroxyapatite composite: Mechanical and tribological performance and in vitro biocompatibility to osteoblasts. J. Mech. Behav. Biomed. Mater. 4, 44 (2011).

    Article  CAS  Google Scholar 

  23. P. Tatarko, S. Grasso, H. Porwal, Z. Chlup, R. Saggar, I. Dlouhy, and M.J. Reece: Boron nitride nanotubes as a reinforcement for brittle matrices. J. Eur. Ceram. Soc. 34, 3339 (2014).

    Article  CAS  Google Scholar 

  24. S. Trivedi, S.C. Sharma, and S.P. Harsha: Evaluations of young’s modulus of boron nitride nanotube reinforced nano-composites. Procedia Mater. Sci. 6, 1899 (2014).

    Article  CAS  Google Scholar 

  25. Y. Xue, B. Jiang, L. Bourgeois, P. Dai, M. Mitome, C. Zhang, M. Yamaguchi, A. Matveev, C. Tang, Y. Bando, K. Tsuchiya, and D. Golberg: Aluminum matrix composites reinforced with multi-walled boron nitride nanotubes fabricated by a high-pressure torsion technique. Mater. Des. 88, 451 (2015).

    Article  CAS  Google Scholar 

  26. M. Yamaguchi, A. Pakdel, C. Zhi, Y. Bando, D-M. Tang, K. Faerstein, D. Shtansky, and D. Golberg: Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons. Nanoscale Res. Lett. 8, 3 (2013).

    Article  CAS  Google Scholar 

  27. M. Yamaguchi, D-M. Tang, C. Zhi, Y. Bando, D. Shtansky, and D. Golberg: Synthesis, structural analysis and in situ transmission electron microscopy mechanical tests on individual aluminum matrix/boron nitride nanotube nanohybrids. Acta Mater. 60, 6213 (2012).

    Article  CAS  Google Scholar 

  28. M.S. Daw and M.I. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  29. M.I. Mendelev, D.J. Srolovitz, G.J. Ackland, and S. Han: Effect of Fe segregation on the migration of a non-symmetric sigma-5 tilt grain boundary in Al. J. Mater. Res. 20, 208 (2005).

    Article  CAS  Google Scholar 

  30. J. Tersoff: Modeling solid-state chemistry: Interatomic potentials for mnlticomponent systems. Phys. Rev. B 39, 5566 (1989).

    Article  CAS  Google Scholar 

  31. S. Arcidiacono, J.H. Walther, D. Poulikakos, D. Passerone, and P. Koumoutsakos: Solidification of gold nanoparticles in carbon nanotubes. Phys. Rev. Lett. 94, 105502 (2005).

    Article  CAS  Google Scholar 

  32. H.Y. Song and X.W. Zha: Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube–aluminum composites. Comput. Mater. Sci. 49, 899 (2010).

    Article  CAS  Google Scholar 

  33. X. Song, Z. Gan, S. Liu, H. Yan, and Q. Lv: Computational study of thermocompression bonding of carbon nanotubes to metallic substrates. J. Appl. Phys. 106, 104308 (2009).

    Article  CAS  Google Scholar 

  34. F. Banhart: Interactions between metals and carbon nanotubes: At the interface between old and new materials. Nanoscale 1, 201 (2009).

    Article  CAS  Google Scholar 

  35. B.K. Choi, G.H. Yoon, and S. Lee: Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading. Composites, Part B 91, 119 (2016).

    Article  CAS  Google Scholar 

  36. Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon, and S.M. Han: Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat. Commun. 4, 2114 (2013).

    Article  CAS  Google Scholar 

  37. R. Rezaei, M. Shariati, H. Tavakoli-Anbaran, and C. Deng: Mechanical characteristics of CNT-reinforced metallic glass nanocomposites by molecular dynamics simulations. Comput. Mater. Sci. 119, 19 (2016).

    Article  CAS  Google Scholar 

  38. R. Rezaei, C. Deng, M. Shariati, and H. Tavakoli-Anbaran: The ductility and toughness improvement in metallic glass through the dual effects of graphene interface. J. Mater. Res. 32, 392 (2017).

    Article  CAS  Google Scholar 

  39. R. Rezaei, C. Deng, H. Tavakoli-Anbaran, and M. Shariati: Deformation twinning-mediated pseudoelasticity in metal–graphene nanolayered membrane. Philos. Mag. Lett. 96, 322 (2016).

    Article  CAS  Google Scholar 

  40. V.P. Filippova, S.A. Kunavin, and M.S. Pugachev: Calculation of the parameters of the Lennard-Jones potential for pairs of identical atoms based on the properties of solid substances. Inorg. Mater. Appl. Res. 6, 1 (2015).

    Article  Google Scholar 

  41. J.W. Kang and H.J. Hwang: Comparison of C60 encapsulations into carbon and boron nitride nanotubes. J. Phys.: Condens. Matter 16, 3901 (2004).

    CAS  Google Scholar 

  42. E. Mohammadpour and M. Awang: Nonlinear finite-element modeling of graphene and singleand multi-walled carbon nanotubes under axial tension. Appl. Phys. A 106, 581 (2012).

    Article  CAS  Google Scholar 

  43. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 17, 1 (1995).

    Article  Google Scholar 

  44. A. Stukowski: Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool modelling. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Rezaei.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, R., Shariati, M. & Tavakoli-Anbaran, H. Mechanical characteristics and deformation mechanism of boron nitride nanotube reinforced metal matrix nanocomposite based on molecular dynamics simulations. Journal of Materials Research 33, 1733–1741 (2018). https://doi.org/10.1557/jmr.2018.93

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.93

Navigation