Skip to main content
Log in

Low-Cost Hydroxyapatite Powders from Tilapia Fish

  • Advanced Manufacturing for Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Synthetic hydroxyapatite {HAp, Ca10(PO4)6(OH)2} is a bioactive and biocompatible material widely used in healthcare for bone implants and grafts, due to its chemical and structural similarity with biological hydroxyapatite present in bone tissues. In this work, HAp was processed by calcination of tilapia fish bones from fish reared in net tanks and slaughtered at the age of 360 days. The bones were cleaned and dried, calcined at 900°C for 8 h and submitted to high energy milling for 8 h, to produce HAp powder. The thermogravimetric analysis and differential thermal analysis (TGA-DTA), dynamic light scattering (DLS), x-ray diffraction (XRD), Rietveld refinement, Fourier-transform infrared spectroscopy (FTIR) with attenuated total reflection (ATR), Raman spectroscopy and scanning electron microscopy (SEM), were techniques used to characterize the material produced. The results indicate that the methodology employed is effective for the production of nanostructured HAp powder, with particle size ranging from 600 nm to 1200 nm and grain size between 0.25 and 1.1 µm (evaluated by SEM in one piece of calcined bone). TGA-DTA analysis indicates complete removal of organic components at temperatures above 600°C. XRD analysis and refinement by the Rietveld method indicated the presence of a single crystalline phase, HAp, with a Ca/P ratio of 1.66. The results obtained by Raman spectroscopy and FTIR-ATR show the presence of characteristic vibrational bands of HAp. In conclusion, the results of this work showed that the methodology used allowed the production of a natural and crystalline hydroxyapatite, with a Ca/P molar ratio of 1.66, with potential for use in bone reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.O. Wagner and P. Aspenberg, Acta Orthop. 82, 393 (2011).

    Google Scholar 

  2. S.V. Dorozhkin, BIO 1, 1 (2011).

    Google Scholar 

  3. A.B. Novaes Jr., S.L.S. de Souza, R.R.M. de Barros, K.K.Y. Pereira, G. Iezzi, and A. Piattelli, Inv. Rev. Art. Braz. Dent. J. 21, 471 (2010).

    Google Scholar 

  4. L.P. Faverani, G.R. Ferreira, E.C.G. Jardim, R. Okamoto, E.H. Shinohara, W.G. Assunção, I.R. Garcia Junior, Salusvita, 30, 47-58 (2011).

  5. R.L. Oréfice, M.M. Pereira, S.H. Mansur, Biomateriais: fundamentos e aplicações, 1st ed. (Rio de Janeiro, RJ: Ed. Cultura Médica, 2006), pp. 20-24.

  6. R.Z. LeGeros, Calcium phosphate in oral biology and medicine, 1st ed. (New York, NY: Karger, 1991), pp. 123–130.

    Google Scholar 

  7. J. Park and R.S. Lakes, Biomaterials an introduction, 3rd ed. (Green Bay, WIS: Sprin. Sci, 2007), pp. 56–61.

    Google Scholar 

  8. E.Y. Kawachi, C.A. Bertran, R.R. Reis, and O.L. Alves, New Chem. 23, 518 (2000).

    Google Scholar 

  9. S. Krieger, Biocerâmica (São Paulo, SP: University of Sao Paulo, 2003).

    Google Scholar 

  10. S.V. Dorozhkin, Biom. 31, 1465 (2010).

    Google Scholar 

  11. W.R. Weinand, Natural hydroxyapatite obtained by calcination of fish bone and its application in the production of biocompatible ceramic composites (Maringá, PR: Universidade Estadual de Maringá, 2009).

    Google Scholar 

  12. J.W. Drexler, Materials engineering for enhanced tissue scaffold mechanical properties (Columbus, OH: Ohio State University, 2010).

    Google Scholar 

  13. M. Okada and T. Matsumoto, Jap. Dental Science Review 51, 85 (2015).

    Google Scholar 

  14. A.C.F.M. Costa, M.G. Lima, L.H.M.A. Lima, V.V. Cordeiro, K.M.S. Viana, C.V. Souza, and H.L. Lira, Rev. Elet. de Mat. e Proc. 4, 29 (2009).

    Google Scholar 

  15. S. Joschek, B. Nies, R. Krotz, and A. Gökpferich, Biomaterials 21, 1645 (2000).

    Google Scholar 

  16. G. da Silva Falk, Synthesis and processing of niobium pentoxide and mixed oxides of the niobium and titanium nanoparticulated and study of their photocatalytic properties. Universidade Federal de Santa Catarina, SC, June 2017.

  17. A.N.K. bin A. Fara, M.A. Yahya, H.Z. Abdullah, in International Conference on X-Rays & Related Techniques in Research & Industry 2014 (ICXRI2014).

  18. A.N.K.A. Fara and H.Z. Abdullah, AIP Conf. Proc. 1669, 020077 (2015).

    Google Scholar 

  19. K. Sockalingama, M.A. Yahya, and H.Z. Abdullah, Adv. Mater. Res. 1087, 30 (2015).

    Google Scholar 

  20. A.N.K.A. Fara, M.A. Yahya, and H.Z. Abdullah, Adv. Mater. Res. 1087, 152 (2015).

    Google Scholar 

  21. N. Mustafa, M.H.I. Ibrahim, R. Asmawi, and A.M. Amin, Appl. Mech. and Mat. 773, 287 (2015).

    Google Scholar 

  22. A.N.K.A. Fara, G. Prakash, and H.Z. Abdullah, Adv Materials Research 1125, 474 (2015).

    Google Scholar 

  23. A.N.K.A. Fara and H.Z. Abdullah, Mat. Sci. Forum 840, 151 (2016).

    Google Scholar 

  24. A.C. Rodríguez Aranda, J.C. Tamayo Partida, K.F. Martínez Vizcarra, C.A.Ramírez Barragán, J.A. Andrade Ortega, Coloquio de Investigación Multidisciplinaria, 1, 8102 (2007).

  25. K. Yamamoto, Y. Yoshizawa, K. Yanagiguchi, T. Ikeda, S. Yamada, and Y. Hayashi, Inter. Journal of Pol. Sci. 957385, 5 (2015).

    Google Scholar 

  26. W-K. Liu, B-S Liaw, W-K. Chang, Y-F Wang, P-W. Chen, The Journal of The Min., Met. & Mat. Soc., 69, 4 (2017).

  27. M. Ozawa and S. Suzuki, J. Am. Ceram. Soc. 85, 1315 (2002).

    Google Scholar 

  28. K. Prabakaran and S. Rajeswari, Trends Biomater. Artif. Organs 20, 20 (2006).

    Google Scholar 

  29. T.M. Coelho, E.S. Nogueira, A. Steimacher, A.N. Medina, W.R. Weinand, W.M. Lima, M.L. Baesso, and A.C. Bento, J. Appl. Phys. 100, 094312 (2006).

    Google Scholar 

  30. J. Juraida, M. Sontang, E.A. Ghapur, M.I.N. Isa, Emp. Sci., Tech. and Innov. Towards a Better Tomorrow, 1, 82, (2011).

  31. M. Boutinguiza, J. Pou, R. Comesaña, F. Lusquiños, A. de Carlos, and B. León, Mat. Sci. and Eng. C. 32, 478 (2012).

    Google Scholar 

  32. C. Piccirillo, R.C. Pullar, D.M. Tebaldi, P.M.L. Castro, and M.M.E. Pintado, Ceram. Int. 40, 13231 (2014).

    Google Scholar 

  33. S.M. Naga, H.F. El-Maghraby, E.M. Mahmoud, M.S. Talaat, and A.M. Ibrahim, Ceram. Int. 41, 15010 (2015).

    Google Scholar 

  34. J. Sukaimi, S. Hamzah, and M.S.M. Ghazali, Applied Mech. and Mat. 695, 235 (2014).

    Google Scholar 

  35. B. Ratna Sunil, M. Jagannatham. Materials Letters, 185, 411–414 (2016).

    Google Scholar 

  36. S. Paul, A. Pal, A.R. Choudhury, S. Bodhak, V.K. Balla, A. Sinha, and M. Das, Ceram. Int. 43, 15678 (2017).

    Google Scholar 

  37. A.S. Hammond, S.S. Hassan, M.T. Alkhafagy, and H.L. Jaber, SN Applied Sciences (2019). https://doi.org/10.1007/s42452-019-0396-5.

    Article  Google Scholar 

  38. Y. Alparslan, T. Bargar, and T. Baygar, Journal of Food and Health Science 3, 90 (2017).

    Google Scholar 

  39. B. Komur, E. Altun, M.O. Aydogdu, D. Bilgiç, H. Gokce, N. Ekren, S. Salman, A.T. Inan, F.N. Oktar, and O. Gunduz, Acta Phy. Polonica A 131, 400 (2017).

    Google Scholar 

  40. R.N. Granito, A.C.M. Renno, H. Yamamura, M.C. Almeida, P.L.M. Ruiz, and D.A. Ribeiro, Int J Mol Cell Med. 7, 80 (2018).

    Google Scholar 

  41. Y. Wibisono, N.L.B. Dijkstra, W.B. Widayatno, A.S. Wismogroho, M.I. Amal, N.T. Rochman, T. Nishimura, and A. Noviyanto, J. Korean Ceram. Soc. 55, 570 (2018).

    Google Scholar 

  42. S. Sankar, S. Sekar, R. Mohan, Sunita Rani, J. Sundaraseelan, T. P. Sastry, Intern. Journal of Biol. Macrom., 42, 6-9 (2008).

  43. F. Pati, B. Adhikari, and S. Dhara, Biores. Technol. 101, 3737 (2010).

    Google Scholar 

  44. Y.-C. Huang and H.-W. Chu, J. of Marine Sci. and Tech. 217, 16 (2013).

    Google Scholar 

  45. J. Venkatesan, S-K. Kim, Marine Biom.: Charac., Isol. and Applic. (2013) https://doi.org/10.1201/b14723-4.

    Google Scholar 

  46. J. Venkatesan, B. Lowe, P. Manivasagan, K.-W. Kang, E.P. Chalisserry, S. Anil, D.G. Kim, and S.-K. Kim, Materials (2015). https://doi.org/10.3390/ma8085253.

    Article  Google Scholar 

  47. A. Marliana, E. Fitriani, F. Ramadhan, S. Suhandono, K. Yuliani, and T. Windarti, AIP Conf. Proc. 1699, 040006 (2015).

    Google Scholar 

  48. S. Mondal, U. Pal, and A. Dey, Ceram. Int. 42, 18338 (2016).

    Google Scholar 

  49. T. Yin, H. Du, J. Zhang, and S. Xiong, J. Aquat. Food Prod. Technol. (2016). https://doi.org/10.1080/10498850.2015.1010128.

    Article  Google Scholar 

  50. K. Caldato, F.K. da Silva Naves, L. Zatta, R.bras.Tec.Agroin., 13, 2730-2751 (2019).

  51. J.A. da Cruz, Study of the effect of the composition and sintering temperature on the structural properties of the HAp/Nb2O5composite and the evolution of the HAp/β-TCP bioceramics phases in calcined fish bones as a function of age (Maringá, PR: Universidade Estadual de Maringá, 2018).

    Google Scholar 

  52. H.A. Siddiqui, K.L. Pickering, and M.R. Mucalo, Materials 11, 1813 (2018).

    Google Scholar 

  53. B. Yilmaz, A.Z. Alshemary, and Z. Evis, Micr. Jour. 144, 443 (2019).

    Google Scholar 

  54. W.R. Weinand, W.M. Lima, “Processo de obtenção de hidroxiapatita via calcinação do Osso de peixe” (Rede dos Núcleos de Inovação Tecnológica do Paraná, 2019), http://www.nitpar.pr.gov.br/producao-de-hidroxiapatita-via-calcinacao-de-osso-de-peixe. Acessed September 2019.

  55. L.A. Filho, Desempenho productive e econômico da tilapia do Nilo (O. niloticus) cultivada em tanques-rede nos períodos de Inverno e verão, Universidade Estadual de Maringá, Maringá, PR, June 2008.

  56. Lima, W.M., Weinand, W.R., Paesano Jr. A., Ortega, F.H.M. Materials Science Forum, Switzerland, 498, 600, (2005).

  57. H.L. Casa Grande. Introductory course to the Rietveld method. Universidade Estadual de Maringá, Maringá, PR, July 2007.

  58. H. Siesler, W. Ozaki, Y. Kawata, S.H. Heise. near-infrared spectroscopy: principles, instruments, applications. Wiley-VCH, 1st ed. (Berlim: WILEY-VCH Verlag GmbH, 2001) pp. 90-95.

  59. M.E. Brown. Handbook of thermal analysis and calorimetry. 1st. ed. (Amsterdam: Elsv., Sci., 1998) pp. 160-165.

  60. S.W.K. Kweh, K.A. Khor, and P. Cheang, J. Mater. Process. Technol. 89, 373 (1999).

    Google Scholar 

  61. R. Asmawi, M.H.I. Ibrahim, A.M. Amin, N. Mustapha, Ad.Mat.Res., 1087, 142-146 (2015).

  62. A.L. Boskey, P.G. Robey, Osteoporosis, Fourth Edition, Chapter 11, 235–255 (2013).

  63. G.S. Johnson, M.R. Mucalo, and M.A. Lorier, J. Mater. Sci. - Mater. Med. 11, 427 (2000).

    Google Scholar 

  64. Mondal, M. Biswanath, D. Apurba, S.M. Sudit, J. of Min. & Mat. Ch. & Eng. 11, 55, (2012).

  65. E. Champion, Acta Biom. 9, 5855 (2013).

    Google Scholar 

  66. B. Ratner, A. Hoffman, F. Schoen, J. Lemons, Biomaterials Sciences. An Introduction to Materials in Medicine, 2nd ed. (San Diego, CA: Elsevier Academic Press Second Edition, 2004), pp. 851.

  67. R.Z. LeGeros, Ch. Rev. 108, 4742 (2008).

    Google Scholar 

  68. C. Wanpeng and L.L. Hench, Cer. Int. 22, 493 (1996).

    Google Scholar 

  69. C. Liao, F. Lin, K. Chen, and J. Sun, Biomaterials 20, 1807 (1999).

    Google Scholar 

  70. C. Yoder, J. Pasteris, K. Worcester, D. Schermerhorn, M. Sternlieb, J. Goldenber, and Z. Wilte, Miner. 2, 100 (2012).

    Google Scholar 

  71. S. Paul, A. Pal, A.R. Choudhury, S. Bodhak, V.K. Balla, A. Sinha, and M. Das, Cer. Inter. 43, 15678 (2017).

    Google Scholar 

  72. H-S. Ryu, K.S. Hong, J-K. Lee, D. J. Kim, J.H. Lee, B-S. Chang, D-h. Lee, C-K. Lee, S-S. Chung, Bio. 25, 393–401 (2004).

Download references

Acknowledgements

We thank the Postgraduate of the PFI/UEM (Postgraduate of the Physics Department/State University of Maringá), DQI/UEM (Chemistry Department), COMCAP/UEM (Complex of Research Support), the DZO/UEM (Pisciculture Center located in the Floriano District of the, and the Crow River Station of the UEM in the Regional Campus Diamante do Norte-PR city), Foundation Araucária, CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FINEP (Financiadora de Estudos e Projetos) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. M. Sales.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cruz, J.A., Weinand, W.R., Neto, A.M. et al. Low-Cost Hydroxyapatite Powders from Tilapia Fish. JOM 72, 1435–1442 (2020). https://doi.org/10.1007/s11837-019-03998-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03998-4

Navigation