Skip to main content

Advertisement

Log in

Fabrication and Mechanics of Bioinspired Materials with Dense Architectures: Current Status and Future Perspectives

  • Advanced Manufacturing for Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Materials with dense architectures are composed of stiff and strong building blocks that are arranged to interact through energy-dissipative interfaces. Examples of these materials include engineered constructions such as the Abeille vault and highly mineralized natural materials such as tooth enamel. Compared with synthetic materials, natural materials with dense architectures exhibit outstanding mechanical performance, serving as a continued source of inspiration and study. This review details the status of advances in the fabrication and mechanics of bioinspired materials with dense architectures. The fabrication methods include freeze-casting, mineralization, 3D printing, coating–assembling, and laser engraving. Micromechanics of the resulting materials are discussed in tension, flexion, fracture, puncture, and impact. The discussion shows that strength of these materials can be improved by decreasing the size of their building blocks to the nm–µm range. However, interface hardening mechanisms that are crucial to the spread of deformation and toughness have not yet been implemented at nm–μm scales although they have been successfully realized for materials with larger building blocks. Future directions to address this and other unmet challenges are discussed throughout the text.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.O. Ritchie, Nat. Mater. 10, 11 (2011).

    Google Scholar 

  2. G. Mayer, Science 310, 5751 (2005).

    Google Scholar 

  3. F. Barthelat, Int. Mater. Rev. 60, 8 (2015).

    Google Scholar 

  4. M. Eder, S. Amini, and P. Fratzl, Science 362, 6414 (2018).

    Google Scholar 

  5. H. Gao, B. Ji, I.L. Jäger, E. Arzt, and P. Fratzl, Proc. Natl. Acad. Sci. U.S.A. 100, 10 (2003).

    Google Scholar 

  6. E. Feilden, T. Giovannini, N. Ni, C. Ferraro, E. Saiz, L. Vandeperre, and F. Giuliani, Scr. Mater. 131, 55 (2017).

    Google Scholar 

  7. B.L. Smith, T.E. Schaeffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D.E. Morse, and P.K. Hansma, Nature (London) 399, 6738 (1999).

    Google Scholar 

  8. F. Barthelat, H. Tang, P.D. Zavattieri, C.M. Li, and H.D. Espinosa, J. Mech. Phys. Solids 55, 2 (2007).

    Google Scholar 

  9. U.G. Wegst, H. Bai, E. Saiz, A.P. Tomsia, and R.O. Ritchie, Nat. Mater. 13, 508 (2014).

    Google Scholar 

  10. Z. Yin, F. Hannard, and F. Barthelat, Science 364, 6447 (2019).

    Google Scholar 

  11. M. Mirkhalaf, A.K. Dastjerdi, and F. Barthelat, Nat. Commun. 5, 3166 (2014).

    Google Scholar 

  12. M.R. Begley, N.R. Philips, B.G. Compton, D.V. Wilbrink, R.O. Ritchie, and M. Utz, J. Mech. Phys. Solids 60, 8 (2012).

    Google Scholar 

  13. S. Askarinejad and N. Rahbar, J. R. Soc. Interface 12, 102 (2015).

    Google Scholar 

  14. N. Abid, M. Mirkhalaf, and F. Barthelat, J. Mech. Phys. Solids (2017)

  15. N.S. Al-Maskari, D.A. McAdams, and J. Reddy, Mech. Adv. Mater. Struct. 26, 9 (2019).

    Google Scholar 

  16. M. Mirkhalaf and B. Ashrafi, Mater. Today Commun. (2017).

  17. A. Bahmani, G. Li, T.L. Willett, and J. Montesano, Compos. Struct. 212 (2019).

  18. G.X. Gu, C.-T. Chen, D.J. Richmond, and M.J. Buehler, Mater. Horizons 5, 5 (2018).

    Google Scholar 

  19. F. Barthelat and M. Mirkhalaf, J. R. Soc. Interface 10, 89 (2013).

    Google Scholar 

  20. F. Barthelat, J. Mech. Phys. Solids 73 (2014).

  21. N. Al-Maskari, D. McAdams, and J. Reddy, Mech. Adv. Mater. Struct. (2019).

  22. A.R. Studart, Chem. Soc. Rev. 45, 2 (2016).

    Google Scholar 

  23. I. Corni, T. Harvey, J. Wharton, K. Stokes, F. Walsh, and R. Wood, Bioinspiration Biomimetics 7, 3 (2012).

    Google Scholar 

  24. P. Fratzl, O. Kolednik, F.D. Fischer, and M.N. Dean, Chem. Soc. Rev. 45, 2 (2016).

    Google Scholar 

  25. W. Huang, D. Restrepo, J.Y. Jung, F.Y. Su, Z. Liu, R.O. Ritchie, J. McKittrick, P. Zavattieri, and D. Kisailus, Adv. Mater. (2019).

  26. M. Mirkhalaf, Z. Deju, and F. Barthelat, Biomimetic hard materials.Engineered Biomimicry, ed. A. Lakhtakia and R.J. Martin-Palma (New York: Elsevier Inc., 2013),

    Google Scholar 

  27. O. Bouaziz, Y. Brechet, and J.D. Embury, Adv. Eng. Mater. 10, 1 (2008).

    Google Scholar 

  28. Y. Brechet and J.D. Embury, Scr. Mater. 68, 1 (2013).

    Google Scholar 

  29. A. Dreyer, A. Feld, A. Kornowski, E.D. Yilmaz, H. Noei, A. Meyer, T. Krekeler, C. Jiao, H. Weller, and G. Schneider, Nat. Mater. 15, 5 (2016).

    Google Scholar 

  30. G.A. Williams, R. Ishige, O.R. Cromwell, J. Chung, A. Takahara, and Z. Guan, Adv. Mater. 27, 26 (2015).

    Google Scholar 

  31. F. Bouville, E. Maire, S. Meille, B. Van de Moortèle, A.J. Stevenson, and S. Deville, Nat. Mater. 13, 5 (2014).

    Google Scholar 

  32. L.-B. Mao, H.-L. Gao, H.-B. Yao, L. Liu, H. Cölfen, G. Liu, S.-M. Chen, S.-K. Li, Y.-X. Yan, and Y.-Y. Liu, Science 354, 6308 (2016).

    Google Scholar 

  33. M.A. Meyers, P.Y. Chen, A.Y.M. Lin, and Y. Seki, Prog. Mater Sci. 53, 1 (2008).

    Google Scholar 

  34. A. Finnemore, P. Cunha, T. Shean, S. Vignolini, S. Guldin, M. Oyen, and U. Steiner, Nat. Commun. 3 (2012).

  35. M. Farhadi-Khouzani, C. Schütz, G.M. Durak, J. Fornell, J. Sort, G. Salazar-Alvarez, L. Bergström, and D. Gebauer, J. Mater. Chem. A 5, 31 (2017).

    Google Scholar 

  36. I.A. Aksay, M. Trau, S. Manne, I. Honma, N. Yao, L. Zhou, P. Fenter, P.M. Eisenberger, and S.M. Gruner, Science 273, 5277 (1996).

    Google Scholar 

  37. T. Kato, Adv. Mater. 12, 20 (2000).

    Google Scholar 

  38. H. Gong, M. Pluntke, O. Marti, P. Walther, L. Gower, H. Cölfen, and D. Volkmer, Colloids Surf. A 354, 1 (2010).

    Google Scholar 

  39. Z. Tang, N.A. Kotov, S. Magonov, and B. Ozturk, Nat. Mater. 2, 6 (2003).

    Google Scholar 

  40. P. Podsiadlo, A.K. Kaushik, E.M. Arruda, A.M. Waas, B.S. Shim, J. Xu, H. Nandivada, B.G. Pumplin, J. Lahann, A. Ramamoorthy, and N.A. Kotov, Science 318, 5847 (2007).

    Google Scholar 

  41. J. Han, Y. Dou, D. Yan, J. Ma, M. Wei, D.G. Evans, and X. Duan, Chem. Commun. 47, 18 (2011).

    Google Scholar 

  42. L.J. Bonderer, A.R. Studart, and L.J. Gauckler, Science 319, 5866 (2008).

    Google Scholar 

  43. H.B. Yao, H.Y. Fang, Z.H. Tan, L.H. Wu, and S.H. Yu, Angew. Chem. Int. Ed. 49, 12 (2010).

    Google Scholar 

  44. H.-B. Yao, Y. Guan, L.-B. Mao, Y. Wang, X.-H. Wang, D.-Q. Tao, and S.-H. Yu, J. Mater. Chem. 22, 26 (2012).

    Google Scholar 

  45. S. Deville, Adv. Eng. Mater. 10, 3 (2008).

    Google Scholar 

  46. Q. Cheng, C. Huang, and A.P. Tomsia, Adv. Mater. 29, 45 (2017).

    Google Scholar 

  47. S. Deville, E. Saiz, R.K. Nalla, and A.P. Tomsia, Science 311, 5760 (2006).

    Google Scholar 

  48. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, and R.O. Ritchie, Science 322, 5907 (2008).

    Google Scholar 

  49. T. Waschkies, R. Oberacker, and M.J. Hoffmann, J. Am. Ceram. Soc. 92 (2009).

  50. M.E. Launey, E. Munch, D.H. Alsem, E. Saiz, A.P. Tomsia, and R.O. Ritchie, J. R. Soc. Interface 7, 46 (2010).

    Google Scholar 

  51. N. Guo, P. Shen, R.-F. Guo, and Q.-C. Jiang, Mater. Sci. Eng. A 748 (2019).

  52. H. Bai, Y. Chen, B. Delattre, A.P. Tomsia, and R.O. Ritchie, Sci. Adv. 1, 11 (2015).

    Google Scholar 

  53. P.M. Hunger, A.E. Donius, and U.G.K. Wegst, J. Mech. Behav. Biomed. Mater. 19, 87 (2013).

    Google Scholar 

  54. M. Grossman, F. Bouville, K. Masania, and A.R. Studart, Proc. Natl. Acad. Sci. 115, 50 (2018).

    Google Scholar 

  55. G. Du, A. Mao, J. Yu, J. Hou, N. Zhao, J. Han, Q. Zhao, W. Gao, T. Xie, and H. Bai, Nat. Commun. 10, 1 (2019).

    Google Scholar 

  56. M.J. Garnier and D.C. Dunand, Mater. Sci. Eng. A 743, 190 (2019).

    Google Scholar 

  57. O.T. Picot, V.G. Rocha, C. Ferraro, N. Ni, E. D’elia, S. Meille, J. Chevalier, T. Saunders, T. Peijs, and M.J. Reece, Nat. Commun. 8, 14425 (2017).

    Google Scholar 

  58. N. Zhao, M. Yang, Q. Zhao, W. Gao, T. Xie, and H. Bai, ACS Nano 11, 5 (2017).

    Google Scholar 

  59. H. Zhang, I. Hussain, M. Brust, M.F. Butler, S.P. Rannard, and A.I. Cooper, Nat. Mater. 4, 10 (2005).

    Google Scholar 

  60. M. Zhang, D. Jiao, G. Tan, J. Zhang, S. Wang, J. Wang, Z. Liu, Z. Zhang, and R.O. Ritchie, ACS Appl. Nano Mater. 2, 2 (2019).

    Google Scholar 

  61. C. Ferraro, E. Garcia-Tuñon, V.G. Rocha, S. Barg, M.D. Fariñas, T.E.G. Alvarez-Arenas, G. Sernicola, F. Giuliani, and E. Saiz, Adv. Func. Mater. 26, 10 (2016).

    Google Scholar 

  62. M.M. Porter, J. Mckittrick, and M.A. Meyers, JOM 65, 6 (2013).

    Google Scholar 

  63. B.E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C.M. Spadaccini, and H.K. Taylor, Science 363, 6431 (2019).

    Google Scholar 

  64. I.D. Robertson, M. Yourdkhani, P.J. Centellas, J.E. Aw, D.G. Ivanoff, E. Goli, E.M. Lloyd, L.M. Dean, N.R. Sottos, and P.H. Geubelle, Nature 557, 7704 (2018).

    Google Scholar 

  65. Z. Jia, Y. Yu, S. Hou, and L. Wang, J. Mech. Phys. Solids 125, 178 (2019).

    Google Scholar 

  66. E.E. de Obaldia, C. Jeong, L.K. Grunenfelder, D. Kisailus, and P. Zavattieri, J. Mech. Behav. Biomed. Mater. 48, 70 (2015).

    Google Scholar 

  67. L.S. Dimas, G.H. Bratzel, I. Eylon, and M.J. Buehler, Adv. Func. Mater. 23, 36 (2013).

    Google Scholar 

  68. E. Feilden, C. Ferraro, Q. Zhang, E. García-Tuñón, E. D’Elia, F. Giuliani, L. Vandeperre, and E. Saiz, Sci. Rep. 7, 1 (2017).

    Google Scholar 

  69. N. Suksangpanya, N.A. Yaraghi, R.B. Pipes, D. Kisailus, and P. Zavattieri, Int. J. Solids Struct. 150, 83 (2018).

    Google Scholar 

  70. L. Zorzetto and D. Ruffoni, Adv. Func. Mater. 29, 1 (2019).

    Google Scholar 

  71. G.X. Gu, M. Takaffoli, and M.J. Buehler, Adv. Mater. 29, 28 (2017).

    Google Scholar 

  72. Z. Jia, Y. Yu, and L. Wang, Mater. Des. 168, 107650 (2019).

    Google Scholar 

  73. K. Agarwal, Y. Zhou, A. Ali, H. Parveen, I. Radchenko, A. Baji, and A.S. Budiman, Adv. Mater. Sci. Eng. 2018, 1 (2018).

    Google Scholar 

  74. R. Chen, J. Liu, C. Yang, D.A. Weitz, H. He, D. Li, D. Chen, K. Liu, and H. Bai, ACS Appl. Mater. Interfaces (2019).

  75. B.G. Compton and J.A. Lewis, Adv. Mater. 26, 34 (2014).

    Google Scholar 

  76. D. Kokkinis, M. Schaffner, and A.R. Studart, Nat. Commun. 6, 8643 (2015).

    Google Scholar 

  77. Y. Yang, X. Li, M. Chu, H. Sun, J. Jin, K. Yu, Q. Wang, Q. Zhou, and Y. Chen, Sci. Adv. 5, 4 (2019).

    Google Scholar 

  78. J.R. Raney, B.G. Compton, J. Mueller, T.J. Ober, K. Shea, and J.A. Lewis, Proc. Natl. Acad. Sci. 115, 6 (2018).

    Google Scholar 

  79. J.J. Martin, B.E. Fiore, and R.M. Erb, Nat. Commun. 6, 8641 (2015).

    Google Scholar 

  80. R.M. Erb, R. Libanori, N. Rothfuchs, and A.R. Studart, Science 335, 6065 (2012).

    Google Scholar 

  81. Verner Hakonsen, Gurvinder Singh, Peter S. Normile, José A. De Toro, and Erik Wahlström, Jianying He (Advacned Functional Materials Accepted: Z. Zhang, 2019).

    Google Scholar 

  82. A. Walther, I. Bjurhager, J.M. Malho, J. Pere, J. Ruokolainen, L.A. Berglund, and O. Ikkala, Nano Lett. 10, 8 (2010).

    Google Scholar 

  83. D. Mereib, U.-C.C. Seu, M. Zakhour, M. Nakhl, N. Tessier-Doyen, J.-L. Bobet, and J.-F. Silvain, J. Mater. Sci. 53, 10 (2018).

    Google Scholar 

  84. R.P. Wilkerson, B. Gludovatz, J. Watts, A.P. Tomsia, G.E. Hilmas, and R.O. Ritchie, Adv. Mater. 28, 45 (2016).

    Google Scholar 

  85. R.P. Wilkerson, B. Gludovatz, J. Watts, A.P. Tomsia, G.E. Hilmas, and R.O. Ritchie, Acta Mater. 148, 147 (2018).

    Google Scholar 

  86. N. Almqvist, N.H. Thomson, B.L. Smith, G.D. Stucky, D.E. Morse, and P.K. Hansma, Mater. Sci. Eng. C 7, 1 (1999).

    Google Scholar 

  87. D. Ji and J. Kim, ACS Nano 13, 3 (2019).

    Google Scholar 

  88. Y.Q. Li, T. Yu, T.Y. Yang, L.X. Zheng, and K. Liao, Adv. Mater. 24, 25 (2012).

    Google Scholar 

  89. B. Liang, Y. Shu, P. Wan, H. Zhao, S. Dong, W. Hao, and P. Yin, Compos. Sci. Technol. 183, 107833 (2019).

    Google Scholar 

  90. T. Guo, L. Heng, M. Wang, J. Wang, and L. Jiang, Adv. Mater. 28, 38 (2016).

    Google Scholar 

  91. W. Cui, M. Li, J. Liu, B. Wang, C. Zhang, L. Jiang, and Q. Cheng, ACS Nano 8, 9 (2014).

    Google Scholar 

  92. H.-L. Gao, S.-M. Chen, L.-B. Mao, Z.-Q. Song, H.-B. Yao, H. Cölfen, X.-S. Luo, F. Zhang, Z. Pan, and Y.-F. Meng, Nat. Commun. 8, 1 (2017).

    Google Scholar 

  93. P. Walley, Y. Zhang, and J. Evans, Bioinspiration Biomimetics 7, 4 (2012).

    Google Scholar 

  94. R. Chen, C.-A. Wang, Y. Huang, and H. Le, Mater. Sci. Eng. C 28, 2 (2008).

    Google Scholar 

  95. L.J. Bonderer, K. Feldman, and L.J. Gauckler, Compos. Sci. Technol. 70, 13 (2010).

    Google Scholar 

  96. P. Das, J.-M. Malho, K. Rahimi, F.H. Schacher, B. Wang, D.E. Demco, and A. Walther, Nat. Commun. 6, 5967 (2015).

    Google Scholar 

  97. H.B. Yao, Z.H. Tan, H.Y. Fang, and S.H. Yu, Angew. Chem. Int. Ed. 49, 52 (2010).

    Google Scholar 

  98. L. Medina, Y. Nishiyama, K. Daicho, T. Saito, M. Yan, and L.A. Berglund, Macromolecules 52, 8 (2019).

    Google Scholar 

  99. P. Laaksonen, A. Walther, J.M. Malho, M. Kainlauri, O. Ikkala, and M.B. Linder, Angew. Chem. Int. Ed. 50, 37 (2011).

    Google Scholar 

  100. C.-A. Wang, B. Long, W. Lin, Y. Huang, and J. Sun, J. Mater. Res. 23, 6 (2008).

    Google Scholar 

  101. W. Lin, C.-A. Wang, H. Le, B. Long, and Y. Huang, Mater. Sci. Eng., C 28, 7 (2008).

    Google Scholar 

  102. T.-H. Lin, W.-H. Huang, I.-K. Jun, and P. Jiang, Chem. Mater. 21, 10 (2009).

    Google Scholar 

  103. H. Le Ferrand, F. Bouville, T.P. Niebel, and A.R. Studart, Nat. Mater. 14, 11 (2015).

    Google Scholar 

  104. P.I. Pelissari, F. Bouville, V.C. Pandolfelli, D. Carnelli, F. Giuliani, A.P. Luz, E. Saiz, and A.R. Studart, J. Eur. Ceram. Soc. 38, 4 (2018).

    Google Scholar 

  105. A. Wat, C. Ferraro, X. Deng, A. Sweet, A.P. Tomsia, E. Saiz, and R.O. Ritchie, Small (2019).

  106. H. Le Ferrand and F. Bouville, J. Am. Ceram. Soc. (2018).

  107. M. Mirkhalaf and F. Barthelat, J. Mech. Behav. Biomed. Mater. 56, 23 (2016).

    Google Scholar 

  108. M.T. Abba, P.M. Hunger, S.R. Kalidindi, and U.G. Wegst, J. Mech. Behav. Biomed. Mater. 55, 140 (2016).

    Google Scholar 

  109. Z. Xiong, C. Liao, W. Han, and X. Wang, Adv. Mater. 27, 30 (2015).

    Google Scholar 

  110. M. Mirkhalaf, C.J. Barrett, and F. Barthelat, RSC Adv. 5, 7 (2015).

    Google Scholar 

  111. S.-I. Roohani-Esfahani, K. Lin, and H. Zreiqat, J. Mater. Sci. 52, 15 (2017).

    Google Scholar 

  112. M. Grossman, F. Bouville, F. Erni, K. Masania, R. Libanori, and A.R. Studart, Adv. Mater. 29, 8 (2017).

    Google Scholar 

  113. T. Magrini, F. Bouville, A. Lauria, H. Le Ferrand, T.P. Niebel, and A.R. Studart, Nature Communications 10, 1 (2019).

    Google Scholar 

  114. Z. Xu, J. Huang, C. Zhang, S. Daryadel, A. Behroozfar, B. McWilliams, B. Boesl, A. Agarwal, and M. Minary-Jolandan, Adv. Eng. Mater. 20, 5 (2018).

    Google Scholar 

  115. S. Baskaran, S.D. Nunn, D. Popovic, and J.W. Halloran, J. Am. Ceram. Soc. 76, 9 (1993).

    Google Scholar 

  116. S. Baskaran, S.D. Nunn, and J.W. Halloran, J. Am. Ceram. Soc. 77, 5 (1994).

    Google Scholar 

  117. M. Götz, T. Fey, and P. Greil, J. Am. Ceram. Soc. 95, 1 (2012).

    Google Scholar 

  118. P.F. Damasceno, M. Engel, and S.C. Glotzer, Science 337, 6093 (2012).

    Google Scholar 

  119. G.M. Whitesides and B. Grzybowski, Science 295, 5564 (2002).

    Google Scholar 

  120. S. Khandelwal, T. Siegmund, R.J. Cipra, and J.S. Bolton, Int. J. Solids Struct. 49, 18 (2012).

    Google Scholar 

  121. M. Carlesso, R. Giacomelli, T. Krause, A. Molotnikov, D. Koch, S. Kroll, K. Tushtev, Y. Estrin, and K. Rezwan, J. Eur. Ceram. Soc. 33, 13 (2013).

    Google Scholar 

  122. M. Mirkhalaf, A. Sunesara, B. Ashrafi, and F. Barthelat, Int. J. Solids Struct. 158, 52 (2019).

    Google Scholar 

  123. S. Schaare, W. Riehemann, and Y. Estrin, Mater. Sci. Eng. A 521-522, 380 (2009).

    Google Scholar 

  124. A.V. Dyskin, Y. Estrin, A.J. Kanel-Belov, and E. Pasternak, Compos. Sci. Technol. 63, 3 (2003).

    Google Scholar 

  125. A. Autruffe, F. Pelloux, C. Brugger, P. Duval, Y. Brechet, and M. Fivel, Adv. Eng. Mater. 9, 8 (2007).

    Google Scholar 

  126. J. Henry and S. Pimenta, J. Mech. Phys. Solids 118, 332 (2018).

    Google Scholar 

  127. L. Mencattelli and S.T. Pinho, Compos. Sci. Technol. (2019).

  128. Y. Feng, T. Siegmund, E. Habtour, and J. Riddick, Int. J. Impact Eng. 75, 140 (2015).

    Google Scholar 

  129. I. Malik, M. Mirkhalaf, and F. Barthelat, J. Mech. Phys. Solids 102, 224 (2017).

    MathSciNet  Google Scholar 

  130. A.V. Dyskin, Y. Estrin, E. Pasternak, H.C. Khor, and A.J. Kanel-Belov, Acta Astronaut. 57, 1 (2005).

    Google Scholar 

  131. M. Mirkhalaf, T. Zhou, and F. Barthelat, Proc. Natl. Acad. Sci. 115, 37 (2018).

    Google Scholar 

  132. M. Stumpf, X. Fan, J. Biggemann, P. Greil, and T. Fey, J. Eur. Ceram. Soc. 39, 6 (2019).

    Google Scholar 

  133. T. Siegmund, F. Barthelat, R. Cipra, E. Habtour, and J. Riddick, Appl. Mech. Rev. 68, 4 (2016).

    Google Scholar 

  134. W.J. Clegg, K. Kendall, N.M. Alford, T.W. Button, and J.D. Birchall, Nature 347, 6292 (1990).

    Google Scholar 

  135. E. Pogorelov, K. Tushtev, A. Arnebold, K. Koschek, A. Hartwig, and K. Rezwan, J. Am. Ceram. Soc. 101, 10 (2018).

    Google Scholar 

  136. Z. Wang, Y. Sun, H. Wu, and C. Zhang, Constr. Build. Mater. 154, 169 (2018).

    Google Scholar 

  137. J. Zechner and O. Kolednik, J. Mater. Sci. 48, 15 (2013).

    Google Scholar 

  138. G. Mayer, Mater. Sci. Eng. C 26, 8 (2006).

    Google Scholar 

  139. F. Barthelat and D. Zhu, J. Mater. Res. 26, 10 (2011).

    Google Scholar 

  140. A.Y. Dyskin, Y. Estrin, A.J. Kanel-Belov, and E. Pasternak, Philos. Mag. Lett. 83, 3 (2003).

    Google Scholar 

  141. M. Brocato and L. Mondardini, Int. J. Solids Struct. 49, 13 (2012).

    Google Scholar 

  142. A.V. Dyskin, Y. Estrin, E. Pasternak, H.C. Khor, and A.J. Kanel-Belov, Adv. Eng. Mater. 5, 3 (2003).

    Google Scholar 

  143. M. Mirkhalaf and F. Barthelat, Extreme Mech. Lett. 11, 1 (2017).

    Google Scholar 

  144. A.S. Dalaq and F. Barthelat, Int. J. Solids Struct. 171, 146 (2019).

    Google Scholar 

  145. L. Chen, R. Ballarini, H. Kahn, and A. Heuer, J. Mater. Res. 22, 1 (2007).

    Google Scholar 

  146. G. Karambelas, S. Santhanam, and Z.N. Wing, Ceram. Int. 39, 2 (2013).

    Google Scholar 

  147. R.R. Gattass and E. Mazur, Nat. Photonics 2, 4 (2008).

    Google Scholar 

  148. M. Mirkhalaf, J. Tanguay, and F. Barthelat, Extreme Mech. Lett. 7, 104 (2016).

    Google Scholar 

  149. M. Mirkhalaf and F. Barthelat, Bioinspiration Biomimetics 10, 2 (2015).

    Google Scholar 

  150. R.K. Chintapalli, M. Mirkhalaf, A.K. Dastjerdi, and F. Barthelat, Bioinspiration Biomimetics 9, 3 (2014).

    Google Scholar 

  151. I.A. Malik and F. Barthelat, Int. J. Solids Struct. 97, 389 (2016).

    Google Scholar 

  152. Z. Yin, A. Dastjerdi, and F. Barthelat, Acta Biomater. 75 (2018).

  153. H.Y. Sarvestani, M. Mirkhalaf, A. Akbarzadeh, D. Backman, M. Genest, and B. Ashrafi, Mater. Des. 167, 107627 (2019).

    Google Scholar 

  154. E. Kheng, H. Iyer, P. Podsiadlo, A. Kaushik, N. Kotov, E. Arruda, and A. Waas, Eng. Fract. Mech. 77, 16 (2010).

    Google Scholar 

  155. C.-A. Wang, Y. Huang, Q. Zan, H. Guo, and S. Cai, Mater. Sci. Eng., C 11, 1 (2000).

    Google Scholar 

  156. T.P. Niebel, F. Bouville, D. Kokkinis, and A.R. Studart, J. Mech. Phys. Solids 96, 133 (2016).

    Google Scholar 

  157. A. Wat, J.I. Lee, C.W. Ryu, B. Gludovatz, J. Kim, A.P. Tomsia, T. Ishikawa, J. Schmitz, A. Meyer, and M. Alfreider, Nature communications 10, 1 (2019).

    Google Scholar 

  158. A. Mather, R. Cipra, and T. Siegmund, Int. J. Struct. Integr. 3, 1 (2012).

    Google Scholar 

  159. C. Ferraro, S. Meille, J. Réthoré, N. Ni, J. Chevalier, and E. Saiz, Acta Mater. 144, 202 (2018).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Australian Research Council, the Australian National Health and Medical Research Council, and the Natural Sciences and Engineering Research Council of Canada. M. Mirkhalaf acknowledges useful discussions with Dr. Peter Newman and Dr. Gurvinder Singh.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Mirkhalaf or Hala Zreiqat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirkhalaf, M., Zreiqat, H. Fabrication and Mechanics of Bioinspired Materials with Dense Architectures: Current Status and Future Perspectives. JOM 72, 1458–1476 (2020). https://doi.org/10.1007/s11837-019-03986-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03986-8

Navigation