Skip to main content
Log in

Rare Earth Recovery from Fluoride Molten-Salt Electrolytic Slag by Borax Roasting-Hydrochloric Acid Leaching

  • Recycling Methods for Industrial Metals and Minerals
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Fluoride molten-salt electrolytic slag is an important secondary resource for recovery of rare earth elements. In this study, the recovery of rare earths from this source was systemically investigated using borax roasting followed by hydrochloric acid leaching. Increasing the roasting temperature, reaction time and borax dosage promoted the recovery of rare earth elements. The roasting process kinetics was controlled by interfacial chemical reaction, with an activation energy of 159.02 kJ mol−1. The leaching experiments demonstrated that increasing the leaching temperature, time, hydrochloric acid concentration and liquid/solid ratio improved the rare earth recovery. The optimum conditions were identified as roasting the slag at 700°C for 60 min with a borax mass dosage of 38 wt.% and subsequently leaching the resulting rare earth-containing residues in 4 mol L−1 HCl at 60°C at a liquid/solid ratio of 5:1 for 40 min. These conditions gave a rare earth recovery exceeding 97%. This work proposes a novel technical route for efficiently and economically recovering rare earths from this source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Bakke, K. Pettersen, and H. Westengen, JOM 55, 46 (2003).

    Article  Google Scholar 

  2. T. Du, Chin. J. Nonferrous Met. 6, 15 (1996).

    Google Scholar 

  3. J.S. Rao, H.J. Li, H.S. Xue, and J. Cent, South Univ. Technol. 17, 28 (2010).

    Article  Google Scholar 

  4. H.M. Zhu, Rare Earth Metal Production by Molten Salt Electrolysis (New York: Springer, 2014), pp. 1765–1772.

    Google Scholar 

  5. Z.H. Chen, Adv. Mater. Ind. 6, 31 (2018).

    Google Scholar 

  6. B.N. Deng, G.H. Li, J. Luo, Q. Ye, M.X. Liu, M.J. Rao, Z.W. Peng, and T. Jiang, JOM 70, 2869 (2018).

    Article  Google Scholar 

  7. C.R. Borra, B. Blanpain, Y. Pontikes, B. Koen, and T.V. Gerven, JOM 68, 2958 (2016).

    Article  Google Scholar 

  8. M.D. Liu, Z.X. You, Z.W. Peng, X. Li, and G.H. Li, JOM 68, 567 (2016).

    Article  Google Scholar 

  9. Y. Yang, A. Walton, R. Sheridan, K. Güth, R. Gauß, O. Gutfleisch, M. Buchert, B. Steenari, T.V. Gerven, P.T. Jones, and K. Binnemans, J. Sustain. Metall. 3, 122 (2017).

    Article  Google Scholar 

  10. K. Binnemans, P.T. Jones, B. Blanpain, T.V. Gerven, Y. Yang, A. Walton, and M. Buchert, J. Clean. Prod. 51, 1 (2013).

    Article  Google Scholar 

  11. J.W. Darcy, H.M.D. Bandara, B. Mishra, B. Blanplain, D. Apelian, and M.H. Emmert, JOM 65, 1381 (2013).

    Article  Google Scholar 

  12. D.Y. Chen, Y.H. Ou, L.C. Liu, and G. Xie, Jiangxi Metall. 25, 4 (2005).

    Google Scholar 

  13. D.J. Sun, Chinese Patent No. CN104818390A (2015).

  14. P. Cen, W.Y. Wu, and X. Bian, Metall. Mater. Trans. B 48, 1539 (2017).

    Article  Google Scholar 

  15. Y.K. Huang, T.A. Zhang, Z.H. Dou, J. Liu, and F.F. Tang, Rare Met. 35, 649 (2016).

    Article  Google Scholar 

  16. Y.B. Lu and S.D. Zhu, Chinese Patent No. CN105256156A (2016).

  17. D.Y. Hu, L.C. Li, and R.G. Zhang, Chinese Patent No. CN104843761A (2015).

  18. J. Lin, Q.P. He, and C.X. Li, Chinese Patent No. CN101956078A (2011).

  19. Y. Liang, Y.K. Li, L.Y. Xue, and Z. Yu, J. Clean. Prod. 177, 567 (2018).

    Article  Google Scholar 

  20. Y. Li, H.X. Lei, and X.W. Huang, J. Chin. Soc. Rare Earths 32, 604 (2014).

    Google Scholar 

  21. G.X. Xu, Rare Earths, 2nd ed., Vol. 1 (Beijing: Metallurgical Industry Press Co., Ltd., 2005), p. 367.

    Google Scholar 

  22. H.E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  Google Scholar 

  23. P. Budrugeac and E. Segal, J. Therm. Anal. Calorim. 88, 703 (2007).

    Article  Google Scholar 

  24. A. Roine, HSC Chemistry, vers. 9.0. (Pori: Outotec Research Oy, 2016). http://www.outotec.com/products/digital-solutions/hsc-chemistry/. Accessed 25 June 2019.

  25. M.W. Chase, J.L. Curnutt, A.T. Hu, H. Prophet, A.N. Syverud, and L.C. Walker, J. Phys. Chem. Ref. Data 3, 311 (1974).

    Article  Google Scholar 

  26. J.A. Dean, Lange’s Handbook of Chemistry, 2nd ed. (Beijing: China Science Publishing & Media Ltd., 2003), pp. 3.45–3.47.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA061901) and the National Natural Science Foundation of China (Grant No. 51774155) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Niu or Leiting Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wei, T., Xiao, M. et al. Rare Earth Recovery from Fluoride Molten-Salt Electrolytic Slag by Borax Roasting-Hydrochloric Acid Leaching. JOM 72, 939–945 (2020). https://doi.org/10.1007/s11837-019-03732-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03732-0

Navigation