Skip to main content
Log in

Matte Entrainment by SO2 Bubbles in Copper Smelting Slag

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The attachment of copper matte by bubbles in slags, during the copper smelting process, plays a key role in the copper loss. This paper aims to provide an in-depth insight into the copper matte entrainment by bubbles in the copper production. The bubble size distribution and matte film thickness as well as the bubble detachment height were considered based on industrial and laboratory slag samples. The results indicated that most SO2 micro-bubbles in both slag samples were below 650 µm, which could penetrate the interface and thus transport matte into the slag phase. The matte film thickness surrounding the micro-bubbles tended to be less than 30 µm and became thinner with increasing bubble size. Furthermore, micro-bubbles larger than 350 µm could theoretically rise by 0.5 m in the slag phase even with the drag force of the matte droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Zhao, Z. Cui, and Z. Wang, 4th International Symposium on High-Temperature Metallurgical Processing (2013), p. 3.

  2. D. Poggi, R. Minto, and W.G. Davenport, JOM 21, 40 (1969).

    Article  Google Scholar 

  3. M. Chen, L. Contreras, and B. Zhao, Copper 2016, 976 (2016).

    Google Scholar 

  4. X. Cheng, Z. Cui, L. Contreras, M. Chen, N. Anh, and B. Zhao (eds.), 8th International Symposium on High-Temperature Metallurgical Processing (2017). https://doi.org/10.1007/978-3-319-51340-9_37.

  5. N. Cardona, L. Hermandez, E. Araneda, and R. Parra, Evaluation of copper losses in the slag cleaning circuits from two Chilean smelters, in Proceedings of Conference on Copper, June 2010, pp. 2637–2654.

  6. I.K. Suh, Y. Waseda, and A. Yazawa, High Temp. Mater. Process. (Lond.) 8, 65 (1988).

    Google Scholar 

  7. M. Schlesinger, M. King, K. Sole, and W. Davenport, Extractive Metallurgy of Copper (Oxford: Elsevier, 2011), p. 191.

    Book  Google Scholar 

  8. R. Minto and W.G. Davenport, Can. Min. Metall. Bull. 65, 36 (1972).

    Google Scholar 

  9. G.A. Greene, J.C. Chen, and M.T. Conlin, Int. J. Heat Mass Transf. 31, 1309 (1988).

    Article  Google Scholar 

  10. S.W. Ip and J.M. Toguri, Metall. Mater. Trans. B 23, 303 (1992).

    Article  Google Scholar 

  11. M. Tanno, J. Liu, X. Gao, S.J. Kim, S. Ueda, and S. Kitamura, Metall. Mater. Trans. B 48, 2913 (2017).

    Article  Google Scholar 

  12. R. Bonhomme, J. Magnaudet, F. Duval, and B. Piar, J. Fluid Mech. 707, 405 (2012).

    Article  Google Scholar 

  13. K.K. Singh and H.-J. Bart, Ind. Eng. Chem. Res. 54, 9478 (2015).

    Article  Google Scholar 

  14. N. Dietrich, S. Poncin, S. Pheulpin, and H. Li, AIChE J. 54, 594 (2008).

    Article  Google Scholar 

  15. J.L. Mercier, F.M. Cunha, J.C. Teixeira, and M.P. Scofield, J. Appl. Mech. 41, 29 (1974).

    Article  Google Scholar 

  16. G.A. Greene, J.C. Chen, and M.T. Conlin, Int. J. Heat Mass Transf. 34, 149 (1991).

    Article  Google Scholar 

  17. G. Reiter and K. Schwerdtfeger, ISIJ Int. 32, 50 (1992).

    Article  Google Scholar 

  18. M. Kemiha, E. Olmos, W. Fei, S. Poncin, and H.Z. Li, Ind. Eng. Chem. Res. 46, 6099 (2007).

    Article  Google Scholar 

  19. Y.H. Mori, K. Komotori, K. Higeta, and J. Inada, Can. J. Chem. Eng. 55, 9 (1977).

    Article  Google Scholar 

  20. T.S. Emery, P.A. Raghupathi, and S.G. Kandlikar, Langmuir 34, 6766 (2018).

    Article  Google Scholar 

  21. A.V. Nguyen, H.J. Schulze, H. Stechemesser, and G. Zobel, Int. J. Miner. Process. 50, 97 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank National Copper Corporation of Chile (Codelco), Dongying Fangyuan Nonferrous Metals (Fangyuan) and Australia Research Council for financial support through the ARC Linkage program. The authors also would like to thank China Scholarship Council (CSC) and The University of Queensland to provide Xiangfeng Cheng scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Cui, Z., Contreras, L. et al. Matte Entrainment by SO2 Bubbles in Copper Smelting Slag. JOM 71, 1897–1903 (2019). https://doi.org/10.1007/s11837-019-03423-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03423-w

Navigation