Skip to main content
Log in

Mechanical and Swelling Properties of Hydroxyl-Terminated Polybutadiene-Based Polyurethane Elastomers

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The mechanical and swelling properties of an elastomeric polyurethanes have been studied. The elastomers were composed of hydroxyl-terminated polybutadiene, the chain extended with either glyceryl monoricinoleate, neopentyl glycol, trimethylolpropane and cured with toluene diisocyanate and 4,4′-methylene diphenyl diisocyanate. The mineral fillers under study were nanoclay, TiO2, ZrO2 and ZnO. Gel fraction, crosslinking degree and average molecular weight between crosslinks were calculated from the swelling data. The hydrogen bonding index, which is a measure of hydrogen bonding, was calculated from infrared spectrophotometric data. The most remarkable result was that crosslink density diminished for a nanoclay polyurethane nanocomposite compared to an unfilled sample. Samples with nanoclay exhibited an unusual inverse correlation between crosslink density and tensile strength. Our findings showed that nanoclay in particular is an effective inorganic filler that can modulate the microstructural and mechanical behavior of polyurethane elastomers for tuned applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. C. Prisacariu, Polyurethane Elastomers: From Morphology to Mechanical Aspects (Wien: Springer, 2011).

    Book  Google Scholar 

  2. N. Ahmad, M. Khan, X. Ma, and N. Ul-Haq, Arab. J. Sci. Eng. 39, 43–51 (2014).

    Article  Google Scholar 

  3. S. Jain, V. Sekkar, and V. Krishnamurthy, J. Appl. Polym. Sci. 48, 1515–1523 (1993).

    Article  Google Scholar 

  4. P. Maji and A. Bhowmick, J. Polym. Sci. Part A 47, 731–745 (2009).

    Article  Google Scholar 

  5. V. Sekkar, M.R. Rao, V.N. Krishnamurthy, and S.R. Jain, J. Appl. Polym. Sci. 62, 2317–2327 (1996).

    Article  Google Scholar 

  6. V. Sekkar, K. Narayanaswamy, K. Scariah, P. Nair, K. Sastri, and H. Ang, J. Appl. Polym. Sci. 101, 2986–2994 (2006).

    Article  Google Scholar 

  7. V. Sekkar, J. Appl. Polym. Sci. 117, 920–925 (2010).

    Article  Google Scholar 

  8. N. Ducruet, L. Delmotte, G. Schrodj, F. Stankiewicz, N. Desgardin, M. Vallat, and B. Haidar, J. Appl. Polym. Sci. 128, 436–443 (2013).

    Article  Google Scholar 

  9. M. Špírková, L. Matějka, D. Hlavatá, B. Meissner, and J. Pytela, J. Appl. Polym. Sci. 77, 381–389 (2000).

    Article  Google Scholar 

  10. D. French. Rubber Chemistry and Technology, Vol XLII, No. 1 (1969), pp. 71–109.

  11. U. Meier-Westhues, Polyurethanes Coatings, Adhesives and Sealants (Hannover, Germany: European Coating Tech Files, Vincentz Network, 2007).

    Google Scholar 

  12. A. Azza, M. Ward, B. Stol, W Von Soden, S. Herminghaus, and A. Mansour. Rubber, Macromol. Mater. Eng., 2003288, No. 12 (2003).

  13. V. Rodić and M. Petrić, Sci. Tech. Rev. 54, 9–14 (2004).

    Google Scholar 

  14. P. Ross, G. Escobar, G. Sevilla, and J. Quagliano, Open Chem. 15, 46–52 (2017).

    Article  Google Scholar 

  15. R.W. Seymour, G.M. Estes, and S.L. Cooper, Macromolecules 3, 579–583 (1970).

    Article  Google Scholar 

  16. Y. Tien and K. Wein, Polymer 42, 3213–3221 (2001).

    Article  Google Scholar 

  17. A. Pattanayak and S. Jana, Polymer 46, 3275–3288 (2005).

    Article  Google Scholar 

  18. P. Flory and J. Rehner, J. Chem. Phys. 11, 521–526 (1943).

    Article  Google Scholar 

  19. M. Vallat, N. Bessaha, J. Schultz, J. Maucort, and C. Combette, J. Appl. Polym. Sci. 76, 665–671 (2000).

    Article  Google Scholar 

  20. A. Marzocca, Euro. Polym. J. 43, 2682–2689 (2007).

    Article  Google Scholar 

  21. S. Zhu and R. Wool, Polymer 47, 8106–8115 (2006).

    Article  Google Scholar 

  22. S. Benli, U. Yilmazer, F. Pekel, and S.J. Ozkar, Appl. Polym. Sci. 68, 1057–1065 (1998).

    Article  Google Scholar 

  23. M. Alexandre and P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng., R 28, 1–63 (2000).

    Article  Google Scholar 

  24. N. Ahmad, M.B. Khan, X. Ma, and N. Ul-Haq, Arab. J. Sci. Eng. 39, 43–51 (2014).

    Article  Google Scholar 

  25. S. Ramesh, P. Rajalingam, and G. Radhakrishnan, Polym. Int. 25, 253–256 (1991).

    Article  Google Scholar 

  26. M. Barlkani and C. Hepburn, Determination of crosslink density by swelling in the castable polyurethane elastomer based on 1/4-cyclohexane diisocyanate and para-phenylene diisocyanate. Iran. J. Polym. Sci. Technol. 1, 1–5 (1992).

    Google Scholar 

  27. A. Dorigato, A. Pegoretti, and A. Penati, J. Reinf. Plast. Compos. 30, 325–335 (2011).

    Article  Google Scholar 

  28. S.L. Huang and J.Y. Lai, J. Membr. Sci. 105, 137–145 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Quagliano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quagliano, J., Bocchio, J. & Ross, P. Mechanical and Swelling Properties of Hydroxyl-Terminated Polybutadiene-Based Polyurethane Elastomers. JOM 71, 2097–2102 (2019). https://doi.org/10.1007/s11837-019-03417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03417-8

Navigation