Skip to main content
Log in

Thermally Activated Slip in Rare Earth Containing Mg-Mn-Ce Alloy, ME10, Compared with Traditional Mg-Al-Zn Alloy, AZ31

  • Aluminum and Magnesium: High Strength Alloys for Automotive and Transportation Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

It is of interest to assess the thermally activated nature of the deformation mechanisms responsible for the anisotropic response of textured Mg alloys, especially in those alloys that do and do not contain rare earth elements. The repeated stress relaxation method in combination with elasto-viscoplastic self-consistent (EVPSC) polycrystal modeling is employed to determine the strain rate sensitivity and true activation volume of samples of textured, polycrystalline Mg alloys, ME10 and AZ31, loaded along different directions in both the hard-rolled (F) and annealed (O) tempers. The results of Haasen plot analyses suggest that a superposition of at least two key mechanisms is responsible for controlling the thermally activated motion of dislocation for both of the alloy types investigated. One has a lower activation volume (solute-dislocation interaction and/or cross-slip), while the other is the ever-present forest dislocation interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U.F. Kocks, A.S. Argon, and M.F. Ashby, Thermodynamics and Kinetics of Slip, Progress in Materials Science, vol. 19, ed. B. Chalmers, J.W. Christ, and T.B. Massalsk (Oxford: Pergamon Press, 1975), pp. 1–288.

  2. D. Caillard and J.L. Martin, Thermally Activated Mechanisms in Crystal Plasticity (Pergamon Materials Series, Vol. 8 (Amsterdam: Elsevier, 2003).

    Google Scholar 

  3. H. Conrad and W.D. Robertson, Trans AIME 209, 503 (1957).

    Google Scholar 

  4. H. Conrad, L. Hays, G. Schoeck, and H. Wiedersich, Acta Metall. 9, 367 (1961).

    Article  Google Scholar 

  5. A. Couret and D. Caillard, Acta Metall. 33, 1447 (1985).

    Article  Google Scholar 

  6. A. Couret and D. Caillard, Acta Metall. 33, 1455 (1985).

    Article  Google Scholar 

  7. A. Ahmadieh, J. Mitchell, and J. Dorn, Lithium Alloying and Dislocation Mechanisms for Prismatic Slip in Magnesium (No. UCRL-11417 Rev. 2) (Berkeley: California University, Lawrence Radiation Lab, 1965), pp.1–34.

  8. A. Akhtar and E. Teghtsoonian, Acta Metall. 17, 1351 (1969).

    Article  Google Scholar 

  9. A. Akhtar and E. Teghtsoonian, Acta Metall. 17, 1339 (1969).

    Article  Google Scholar 

  10. D.H. Sastry, Y.V.R.K. Prasad, and K.I. Vasu, Curr. Sci. 39, 97 (1970).

    Google Scholar 

  11. P. Lukac and Z. Trojanová, Key Eng. Mater. 465, 101 (2011).

    Article  Google Scholar 

  12. Z. Trojanová, K. Máthis, P. Lukáč, G. Németh, and F. Chmelík, Mater. Chem. Phys. 130, 1146 (2011).

    Article  Google Scholar 

  13. P. Spätig, J. Bonneville, and J.-L. Martin, Mater. Sci. Eng. A 167, 73 (1993).

    Article  Google Scholar 

  14. J.C. Li, Can. J. Phys. 45, 493 (1967).

    Article  Google Scholar 

  15. T. Kruml, O. Coddet, and J.L. Martin, Acta Mater. 56, 333 (2008).

    Article  Google Scholar 

  16. A.H. Cottrell and R.J. Stokes, Proc. R. Soc. Lond. A 233, 17 (1955).

    Article  Google Scholar 

  17. J.J. Bhattacharyya, F. Wang, P.D. Wu, W.R. Whittington, H. El Kadiri, and S.R. Agnew, Int. J. Plast 81, 123 (2016).

    Article  Google Scholar 

  18. J.J. Bhattacharyya, S.R. Agnew, M.M. Lee, W.R. Whittington, and H. El Kadiri, Int. J. Plast 93, 46 (2017).

    Article  Google Scholar 

  19. A. Jain and S.R. Agnew, Mater. Sci. Eng. A 462, 29 (2007).

    Article  Google Scholar 

  20. H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, and C.N. Tomé, Int. J. Solids Struct. 47, 2905 (2010).

    Article  Google Scholar 

  21. A. Jain, O. Duygulu, D.W. Brown, C.N. Tomé, and S.R. Agnew, Mater. Sci. Eng. A 486, 545 (2008).

    Article  Google Scholar 

  22. H. Wang, P.D. Wu, C.N. Tomé, and Y. Huang, J. Mech. Phys. Solids 58, 594 (2010).

    Article  MathSciNet  Google Scholar 

  23. U.F. Kocks, C.N. Tomé, and H.-R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties (Cambridge: Cambridge University Press, 2000).

    MATH  Google Scholar 

  24. S.R. Agnew and Ö. Duygulu, Int. J. Plast 21, 1161 (2005).

    Article  Google Scholar 

  25. J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, Acta Mater. 55, 2101 (2007).

    Article  Google Scholar 

  26. W.A. Curtin, Scr. Mater. 63, 917 (2010).

    Article  Google Scholar 

  27. R.A. Mulford, Acta Metall. 27, 1115 (1979).

    Article  Google Scholar 

  28. Z. Trojanová, P. Palček, P. Lukáč, and Z. Drozd, Magnes. Alloy. Solid Liq. States (2014), pp. 3–47.

Download references

Acknowledgements

The authors thank the United States National Science Foundation, Division of Materials Research, Metals and Metallic Nanostructures (NSF-DMR-MMN) program, Grant No. 1810197, overseen by program manager Dr. Lynnette Madsen, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jishnu J. Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajikar, V., Bhattacharyya, J.J., Peterson, N. et al. Thermally Activated Slip in Rare Earth Containing Mg-Mn-Ce Alloy, ME10, Compared with Traditional Mg-Al-Zn Alloy, AZ31. JOM 71, 2040–2046 (2019). https://doi.org/10.1007/s11837-018-3310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3310-5

Navigation