Skip to main content

Thermally Activated Nature of Basal and Prismatic Slip in Mg and Its Alloys

  • Conference paper
  • First Online:
Magnesium Technology 2021

Abstract

Throughout the literature, a large discrepancy exists among the activation volumes reported for Mg and its alloys. The present work surveys the reported values for basal and prismatic <a> slip of pure and alloyed Mg single crystals as well as polycrystals. A focus is placed on recent results obtained for rare earth element solutes, Sc and Y. The measured values are discussed in light of a recently developed predictive model for thermally activated basal-solute interaction in Mg alloys. It is found that if the single crystal activation volumes for basal slip in solid solution alloys are computed using the total stress instead of a presumed “thermal component” of the stress, i.e. admitting that thermal fluctuations can aid in overcoming any obstacles present in those materials, then the experimental results are in much better accordance with the theoretical predictions. Possible implications of the combined activities of different deformation modes on the activation volume of pure and alloyed Mg polycrystals are briefly introduced. Finally, using polycrystal elasto-viscoplasticity modelling, it is shown that under conditions relevant to tests performed on polycrystalline, solute-containing binary Mg alloys, basal slip can be the dominant deformation mode at 0.2% offset strain at which the initial activation volume is often assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basinski, Z. S., Jackson, P. J., & Duesbery, M. S. (1977). Transients in steady-state plastic deformation produced by changes of strain rate. Philosophical Magazine, 36(2), 255-263.

    Article  CAS  Google Scholar 

  2. Wagoner, R. H. (1984). Strain-rate sensitivity of zinc sheet. Metallurgical and Materials Transactions A, 15(6), 1265-1271.

    Article  Google Scholar 

  3. Caillard, D., & Martin, J. (2003). Experimental characterization of dislocation mechanisms. Thermally activated mechanisms in crystal plasticity, Pergamon Materials Series, Elsevier Science, Cambridge, UK, 15-18.

    Google Scholar 

  4. Bajikar, V., Bhattacharyya, J. J., Peterson, N., & Agnew, S. R. (2019). Thermally Activated Slip in Rare Earth Containing Mg-Mn-Ce Alloy, ME10, Compared with Traditional Mg-Al-Zn Alloy, AZ31. JOM, 71(6), 2040-2046.

    Article  CAS  Google Scholar 

  5. Leyson, G. P. M., Hector Jr, L. G., & Curtin, W. A. (2012). First-principles prediction of yield stress for basal slip in Mg–Al alloys. Acta Materialia, 60(13-14), 5197-5203.

    Article  CAS  Google Scholar 

  6. Yasi, J. A., Hector Jr, L. G., & Trinkle, D. R. (2011). Prediction of thermal cross-slip stress in magnesium alloys from direct first-principles data. Acta Materialia, 59(14), 5652-5660.

    Article  CAS  Google Scholar 

  7. Akhtar, A., & Teghtsoonian, E. (1969). Solid solution strengthening of magnesium single crystals—I alloying behaviour in basal slip. Acta Metallurgica, 17(11), 1339-1349.

    Article  CAS  Google Scholar 

  8. Bhattacharya, B., & Niewczas, M. (2011). Work-hardening behaviour of Mg single crystals oriented for basal slip. Philosophical Magazine, 91(17), 2227-2247.

    Article  CAS  Google Scholar 

  9. Miura, S., Imagawa, S., Toyoda, T., Ohkubo, K., & Mohri, T. (2008). Effect of rare-earth elements Y and Dy on the deformation behavior of Mg alloy single crystals. Materials Transactions, 0804070382–0804070382.

    Google Scholar 

  10. Akhtar, A., & Teghtsoonian, E. (1969). Solid solution strengthening of magnesium single crystals—ii the effect of solute on the ease of prismatic slip. Acta Metallurgica, 17(11), 1351-1356.

    Article  CAS  Google Scholar 

  11. Flynn, P. W., Mote, J. E. D. J., & Dorn, J. E. (1961). On the thermally activated mechanism of prismatic slip in magnesium single crystals. Transactions of the Metallurgical Society of AIME, 221(6), 1148-1154.

    CAS  Google Scholar 

  12. Ahmadieh, A., Mitchell, J., & Dorn, J. (1964). Lithium alloying and dislocation mechanisms for prismatic slip in magnesium. (No. UCRL-11417). California. Univ., Berkeley. Lawrence Radiation Lab.

    Google Scholar 

  13. Sastry, D. H., Prasad, Y. V. R. K., & Vasu, K. I. (1970). The rate-controlling dislocation mechanism for plastic flow in polycrystalline magnesium. Current Science, 97–100.

    Google Scholar 

  14. Catherine J. Silva. (2014). Effect of Sc Addition on the Mechanical Properties of Mg-Sc Binary Alloys. M.S. thesis, McMaster University.

    Google Scholar 

  15. Jia, X. (2013). Solid solution strengthening and texture evolution in Mg-Y alloys. M.S. thesis, McMaster University.

    Google Scholar 

  16. Conrad, H., & Robertson, W. D. (1957). Effect of temperature on the flow stress and strain-hardening coefficient of magnesium single crystals. JOM, 9(4), 503-512.

    Article  CAS  Google Scholar 

  17. Conrad, H., Hays, L., Schoeck, G., & Wiedersich, H. (1961). On the rate-controlling mechanism for plastic flow of Mg crystals at low temperatures. Acta Metallurgica, 9(4), 367-378.

    Article  CAS  Google Scholar 

  18. Bochniak, W. (1995). Mode of deformation and the Cottrell-Strokes law in FCC single crystals. Acta metallurgica et materialia, 43(1), 225-233.

    CAS  Google Scholar 

  19. Leyson, G. P. M., & Curtin, W. A. (2016). Solute strengthening at high temperatures. Modelling and Simulation in Materials Science and Engineering, 24(6), 065005.

    Article  Google Scholar 

  20. Leyson, G. P. M., & Curtin, W. A. (2016). Thermally-activated flow in nominally binary Al–Mg alloys. Scripta Materialia, 111, 85-88.

    Article  CAS  Google Scholar 

  21. Tehranchi, A., Yin, B., & Curtin, W. A. (2018). Solute strengthening of basal slip in Mg alloys. Acta Materialia, 151, 56-66.

    Article  CAS  Google Scholar 

  22. Basinski, Z. S., Foxall, R. A., & Pascual, R. (1972). Stress equivalence of solution hardening. Scripta Metallurgica6(9), 807-814.

    Article  CAS  Google Scholar 

  23. Couret, A., & Caillard, D. (1985). An in situ study of prismatic glide in magnesium—I. The rate controlling mechanism. Acta Metallurgica, 33(8), 1447-1454.

    Article  CAS  Google Scholar 

  24. Püschl, W. (2002). Models for dislocation cross-slip in close-packed crystal structures: a critical review. Progress in Materials Science, 47(4), 415-461.

    Article  Google Scholar 

  25. Lukáč, P., & Trojanová, Z. (2011). Stress relaxation in an az31 magnesium alloy. In Key Engineering Materials (Vol. 465, pp. 101–104). Trans Tech Publications Ltd.

    Google Scholar 

  26. Trojanová, Z., Máthis, K., Lukáč, P., Németh, G., & Chmelík, F. (2011). Internal stress and thermally activated dislocation motion in an AZ63 magnesium alloy. Materials Chemistry and Physics, 130(3), 1146-1150.

    Article  Google Scholar 

  27. Silva, C. J., Kula, A., Mishra, R. K., & Niewczas, M. (2018). The effect of Sc on plastic deformation of Mg–Sc binary alloys under tension. Journal of Alloys and Compounds, 761, 58-70.

    Article  CAS  Google Scholar 

  28. Silva, C. J., Kula, A., Mishra, R. K., & Niewczas, M. (2017). Mechanical properties of Mg-Sc binary alloys under compression. Materials Science and Engineering: A, 692, 199-213.

    Article  CAS  Google Scholar 

  29. Kang, Y. B., Pelton, A. D., Chartrand, P., & Fuerst, C. D. (2008). Critical evaluation and thermodynamic optimization of the Al–Ce, Al–Y, Al–Sc and Mg–Sc binary systems. Calphad, 32(2), 413-422.

    Article  CAS  Google Scholar 

  30. Cottrell, A. H., & Stokes, R. J. (1955). Effects of temperature on the plastic properties of aluminium crystals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 233(1192), 17–34.

    Google Scholar 

  31. Haasen, P. (1958). Plastic deformation of nickel single crystals at low temperatures. Philosophical Magazine, 3(28), 384-418.

    Article  CAS  Google Scholar 

  32. Nabarro, F. R. N. (1990). Cottrell-Stokes law and activation theory. Acta Metallurgica et Materialia, 38(2), 161-164.

    Article  CAS  Google Scholar 

  33. Yasi, J. A., Hector Jr, L. G., & Trinkle, D. R. (2012). Prediction of thermal cross-slip stress in magnesium alloys from a geometric interaction model. Acta Materialia, 60(5), 2350-2358.

    Article  CAS  Google Scholar 

  34. Molinari, A., Ahzi, S., & Kouddane, R. (1997). On the self-consistent modeling of elastic-plastic behavior of polycrystals. Mechanics of Materials, 26(1), 43-62.

    Article  Google Scholar 

  35. Mercier, S., & Molinari, A. (2009). Homogenization of elastic–viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes. International Journal of Plasticity, 25(6), 1024-1048.

    Article  CAS  Google Scholar 

  36. Wang, H., Wu, P. D., Tomé, C. N., & Huang, Y. (2010). A finite strain elastic–viscoplastic self-consistent model for polycrystalline materials. Journal of the Mechanics and Physics of Solids, 58(4), 594-612.

    Article  CAS  Google Scholar 

  37. Bhattacharyya, J. J., Sasaki, T. T., Nakata, T., Hono, K., Kamado, S., & Agnew, S. R. (2019). Determining the strength of GP zones in Mg alloy AXM10304, both parallel and perpendicular to the zone. Acta Materialia, 171, 231-239.

    Article  CAS  Google Scholar 

  38. Wang, H., Wu, P., Kurukuri, S., Worswick, M. J., Peng, Y., Tang, D., & Li, D. (2018). Strain rate sensitivities of deformation mechanisms in magnesium alloys. International Journal of Plasticity, 107, 207-222.

    Article  CAS  Google Scholar 

  39. Kula, A., Jia, X., Mishra, R. K., & Niewczas, M. (2017). Flow stress and work hardening of Mg-Y alloys. International Journal of Plasticity, 92, 96-121.

    Article  CAS  Google Scholar 

  40. Stanford, N., Cottam, R., Davis, B., & Robson, J. (2014). Evaluating the effect of yttrium as a solute strengthener in magnesium using in situ neutron diffraction. Acta Materialia, 78, 1-13.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research at University of Virginia was sponsored by the Department of Energy, Basic Energy Sciences, Mechanical Behavior, and Radiation Effects Program led by Dr. John Vetrano, Grant # DE-SC0018923. Also, helpful discussions with W.A. Curtin (EPFL) and A. Kula (AGH University of Science and Technology) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Shabana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shabana, M.A., Bhattacharyya, J.J., Niewczas, M., Agnew, S.R. (2021). Thermally Activated Nature of Basal and Prismatic Slip in Mg and Its Alloys. In: Miller, V.M., Maier, P., Jordon, J.B., Neelameggham, N.R. (eds) Magnesium Technology 2021. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-65528-0_9

Download citation

Publish with us

Policies and ethics