Skip to main content
Log in

Trace Carbon Addition to Refine Microstructure and Enhance Properties of Additive-Manufactured Ti-6Al-4V

  • Additive Manufacturing of Ti Components
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Carbon is a powerful alloying element for titanium alloys. In this work, trace carbon is alloyed with Ti-6Al-4V during wire + arc additive manufacturing, and the effects on the solidification process, microstructure and mechanical properties are explored. With between 0.03 wt.% and 0.41 wt.% carbon, the prior-β grain size and α-lath length reduce by factors of 5–6 which is attributed to separate grain refining mechanisms. Alloying Ti-6Al-4V with up to 0.1 wt.% carbon improved both the tensile strength and ductility, but higher carbon additions were associated with excessive carbide formation and severe embrittlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B.E. Carroll, T.A. Palmer, and A.M. Beese, Acta Mater. 87, 309 (2015).

    Article  Google Scholar 

  2. S. Tamirisakandala, R.B. Bhat, J.S. Tiley, and D.B. Miracle, Scr. Mater. 43, 1421 (2005).

    Article  Google Scholar 

  3. M.J. Bermingham, S.D. McDonald, K. Nogita, D.H. St. John, and M.S. Dargusch, Scr. Mater. 59, 538 (2008).

    Article  Google Scholar 

  4. M.J. Bermingham, S.D. McDonald, and M.S. Dargusch, Mater. Sci. Eng. A 719, 1 (2018).

    Article  Google Scholar 

  5. R.M. Mahamood and E.T. Akinlabi, Mater. Des. 84, 402 (2015).

    Article  Google Scholar 

  6. F. Wang, J. Mei, H. Jiang, and X. Wu, Mater. Sci. Eng. A 445, 461 (2007).

    Article  Google Scholar 

  7. A.A.M. da Silva, J.F. dos Santos, and T.R. Strohaecker, Compos. Sci. Technol. 65, 1749 (2005).

    Article  Google Scholar 

  8. L.J. Huang, L. Geng, H.Y. Xu, and H.X. Peng, Mater. Sci. Eng. A 528, 2859 (2011).

    Article  Google Scholar 

  9. C. Ouchi, H. Iizumi, and S. Mitao, Mater. Sci. Eng. A 243, 186 (1998).

    Article  Google Scholar 

  10. Z.Q. Chen and M.H. Loretto, Mater. Sci. Technol. 20, 343 (2004).

    Article  Google Scholar 

  11. M. Chu, X. Wu, I.P. Jones, and M.H. Loretto, Mater. Sci. Technol. 22, 661 (2006).

    Article  Google Scholar 

  12. S. Mereddy, M.J. Bermingham, D.H. StJohn, and M.S. Dargusch, J. Alloys Compd. 695, 2097 (2017).

    Article  Google Scholar 

  13. M.J. Bermingham, D. Kent, H. Zhan, D.H. St John, and M.S. Dargusch, Acta Mater. 91, 289 (2015).

    Article  Google Scholar 

  14. B. Baufeld, O.V.D. Biest, and R. Gault, Mater. Des. 31, 106 (2010).

    Article  Google Scholar 

  15. B. Baufeld, E. Brandl, and O. van der Biest, J. Mater. Process. Technol. 211, 1146 (2011).

    Article  Google Scholar 

  16. B. Baufeld and O. Van der Biest, Sci. Technol. Adv. Mater. (2009). https://doi.org/10.1088/1468-6996/10/1/015008.

    Google Scholar 

  17. E. Brandl, B. Baufeld, C. Leyens, and R. Gault, Phys. Procedia 5b, 595 (2010).

    Article  Google Scholar 

  18. F. Wang, S. Williams, P. Colegrove, and A.A. Antonysamy, Metall. Mater. Trans. A 44, 968 (2013).

    Article  Google Scholar 

  19. S.G. Shabestari and M. Malekan, J. Alloys Compd. 492, 134 (2010).

    Article  Google Scholar 

  20. H.J. Seifert, H.L. Lukas, and G. Petzow, J. Phase Equilib. 17, 24 (1996).

    Article  Google Scholar 

  21. F.A. Crossley, SAMPE J. 22, 31 (1986).

    Google Scholar 

  22. M.J. Bermingham, S.D. McDonald, M.S. Dargusch, and D.H. StJohn, J. Mater. Res. 23, 98 (2008).

    Article  Google Scholar 

  23. M.J. Bermingham, S.D. McDonald, D.H. StJohn, and M.S. Dargusch, J. Alloys Compd. 481, L20 (2009).

    Article  Google Scholar 

  24. Z. Erlin, Z. Songyan, and Z. Zhaojun, J. Mater. Sci. 35, 5989 (2000).

    Article  Google Scholar 

  25. J.Q. Qi, Y.W. Sui, Y. Chang, Y.Z. He, F.X. Wei, Q.K. Meng, and Z.J. Wei, Mater. Charact. 118, 263 (2016).

    Article  Google Scholar 

  26. D. Turnbull and B. Vonnegut, Ind. Eng. Chem. 44, 1292 (1952).

    Article  Google Scholar 

  27. J.A. Reynolds and C.R. Tottle, J. Inst. Met. 80, 93 (1951).

    Google Scholar 

  28. O.P. Solonia and N.M. Ulyakova, Metallovendenie i Termicheskaya Obrabotka Metallov 4, 28 (1974).

    Google Scholar 

  29. Z.Q. Chen, Y.G. Li, and M.H. Loretto, Mater. Sci. Technol. 19, 1391 (2003).

    Article  Google Scholar 

  30. M. Svensson, U. Ackelid U and A. Ab, in Proceedings of the Materials and Processes for Medical Devices Conference, vol. 189 (ASM International, 2010).

Download references

Acknowledgements

The authors would like to acknowledge to support of the School of Mechanical and Mining Engineering and the Queensland Centre for Advanced Materials processing and Manufacturing. M.J. Bermingham acknowledges the support of the Australian Research Council Discovery Program and is in receipt of Discover Early Career Researcher Award (DE160100260). All authors acknowledge the support of the Australian Research Council Research Hub for Advanced Manufacturing of Medical Devices (IH150100024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Bermingham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mereddy, S., Bermingham, M.J., Kent, D. et al. Trace Carbon Addition to Refine Microstructure and Enhance Properties of Additive-Manufactured Ti-6Al-4V. JOM 70, 1670–1676 (2018). https://doi.org/10.1007/s11837-018-2994-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2994-x

Navigation