Skip to main content
Log in

Sustainability of Metal Structures via Spray-Clad Remanufacturing

  • Toward Resources and Processes Sustainability
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Structural reclamation and remanufacturing is an important future design consideration to allow sustainable recovery of degraded structural metals. Heavy machinery and infrastructure components subjected to extended use and/or environment induced degradation require costly and time-consuming replacement. If these parts can be remanufactured to original tolerances, and returned to service with “as good or better” performance, significant reductions in materials, cost, and environmental impact can be achieved. Localized additive restoration via thermal or cold spray methods is a promising approach in recovering and restoring original design strength of degraded metals. The advent of high velocity spray deposition technologies has allowed deposition of near full density materials. In this review, the fundamental scientific and technological elements of such local additive restoration is contemplated including materials, processes, and methodologies to assess the capabilities of such remanufactured systems. This points to sustainable material reclamation, as well as a route toward resource and process sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Photo courtesy: Legacy applications (a), reproduced with permission of Oerlikon Metco;15 Protective metalizing on Forth Rail Bridge (b), Andrew Bell/Wikipedia Commons; Front mining machine strut (c), Dan Sordelet/Caterpillar; Turbine compressor boss with HVOF repair (d), Jan Wigren/GKN Aerospace; Engine spray bore using RotaPlasma HS1 (e), Oerlikon Metco

Fig. 2

Data supplemented with results from Refs. 20, 25,26,27

Fig. 3

Data supplemented with results from Refs. 21, 28

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Herman, S. Sampath, and R. McCune, MRS Bull. 25, 17 (2000).

    Article  Google Scholar 

  2. C.U. Hardwicke and Y.-C. Lau, J. Therm. Spray Technol. 22, 564 (2013).

    Article  Google Scholar 

  3. P. Fauchais, A. Vardelle, and B. Dussoubs, J. Therm. Spray Technol. 10, 44 (2001).

    Article  Google Scholar 

  4. J. Mostaghimi and M.I. Boulos, Plasma Chem. Plasma Process. 35, 421 (2015).

    Article  Google Scholar 

  5. S. Kuroda, Y. Tashiro, H. Yumoto, S. Taira, H. Fukanuma, and S. Tobe, J. Therm. Spray Technol. 10, 367 (2001).

    Article  Google Scholar 

  6. M.L. Thorpe and H.J. Richter, J. Therm. Spray Technol. 1, 161 (1992).

    Article  Google Scholar 

  7. Z. Zeng, N. Sakoda, T. Tajiri, and S. Kuroda, Surf. Coat. Technol. 203, 284 (2008).

    Article  Google Scholar 

  8. I.A. Gorlach, Thin Solid Films 517, 5270 (2009).

    Article  Google Scholar 

  9. S. Adachi and N. Ueda, Coatings 7, 87 (2017).

    Article  Google Scholar 

  10. A. Gouldstone, W.B. Choi, W. Chi, Y. Wu, and S. Sampath, The Cold Spray Materials Deposition Process: Fundamentals and Applications, ed. V.K. Champagne (Cambridge: Woodhead Publishing Ltd, 2007), p. 245.

    Chapter  Google Scholar 

  11. V.K. Champagne, JFAP 8, 164 (2008).

    Article  Google Scholar 

  12. A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao, Surf. Eng. 30, 369 (2014).

    Article  Google Scholar 

  13. N. Cinca, J.M. Rebled, S. Estradé, F. Peiró, J. Fernández, and J.M. Guilemany, J. Alloys Compd. 554, 89 (2013).

    Article  Google Scholar 

  14. S. Sampath, G. Dwivedi, A. Valarezo, and B. Choi, IMMI 2, 1 (2013).

    Google Scholar 

  15. H.S. Ingham and A.P. Shepard, Flame Spray Handbook (Woodbury: Metco Inc, 1969), p. 168.

    Google Scholar 

  16. A. Vackel, G. Dwivedi, and S. Sampath, JOM 67, 1540 (2015).

    Article  Google Scholar 

  17. R.A. Neiser, M.F. Smith, and R.C. Dykhuizen, J. Therm. Spray Technol. 7, 537 (1998).

    Article  Google Scholar 

  18. W.C. Oliver and G.M. Pharr, J. Mater. Res. 19, 3 (2011).

    Article  Google Scholar 

  19. R. McPherson, Thin Solid Films 112, 89 (1984).

    Article  Google Scholar 

  20. J. Matějíček, S. Sampath, T. Gnäupel-Herold, and H.J. Prask, Appl. Phys. A 74, s1692 (2002).

    Article  Google Scholar 

  21. S. Sampath, X.Y. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, and A. Vaidya, Mater. Sci. Eng. A 364, 216 (2004).

    Article  Google Scholar 

  22. G. Dwivedi, T. Wentz, S. Sampath, and T. Nakamura, J. Therm. Spray Technol. 19, 695 (2010).

    Article  Google Scholar 

  23. T. Suhonen, T. Varis, S. Dosta, M. Torrell, and J.M. Guilemany, Acta Mater. 61, 6329 (2013).

    Article  Google Scholar 

  24. J. Matejicek and S. Sampath, Acta Mater. 51, 863 (2003).

    Article  Google Scholar 

  25. W.B. Choi, L. Li, V. Luzin, R. Neiser, T. Gnaupel-Herold, H.J. Prask, S. Sampath, and A. Gouldstone, Acta Mater. 55, 857 (2007).

    Article  Google Scholar 

  26. V. Luzin, A. Vackel, A. Valarezo, and S. Sampath, Mater. Sci. Forum 905, 165 (2017).

    Article  Google Scholar 

  27. V. Luzin, A. Valarezo, and S. Sampath, Mater. Sci. Forum 571, 315 (2008).

    Article  Google Scholar 

  28. W.B. Choi, L. Prchlik, S. Sampath, and A. Gouldstone, J. Therm. Spray Technol. 18, 58 (2009).

    Article  Google Scholar 

  29. M.B. Beardsley and J.L. Sebright, Report No. DOE/GO14037 (Caterpillar Inc., Peoria, 2008).

  30. A. Vackel, T. Nakamura, and S. Sampath, J. Therm. Spray Technol. 25, 1009 (2016).

    Article  Google Scholar 

  31. G. Smith, O. Higgins, and S. Sampath, Surf. Coat. Technol. 328, 211 (2017).

    Article  Google Scholar 

  32. C. Weyant and S. Sampath, ITSSE 6, 64 (2011).

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Andrew Vackel, Dr. Xiaotao Luo, and Dr. Brian Choi for their assistance in development of these methodologies and spray practices, as well as Dr. Vackel’s collaboration with the Canadian National Research Council (CNRC) in Boucherville, Canada and at VTT, Finland in producing some of the evaluated coatings. Support comes from the Industrial Consortium for Thermal Spray Technology at Stony Brook University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory M. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, G.M., Sampath, S. Sustainability of Metal Structures via Spray-Clad Remanufacturing. JOM 70, 512–520 (2018). https://doi.org/10.1007/s11837-017-2676-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2676-0

Navigation