Sustainability of Metal Structures via Spray-Clad Remanufacturing
- 324 Downloads
- 3 Citations
Abstract
Structural reclamation and remanufacturing is an important future design consideration to allow sustainable recovery of degraded structural metals. Heavy machinery and infrastructure components subjected to extended use and/or environment induced degradation require costly and time-consuming replacement. If these parts can be remanufactured to original tolerances, and returned to service with “as good or better” performance, significant reductions in materials, cost, and environmental impact can be achieved. Localized additive restoration via thermal or cold spray methods is a promising approach in recovering and restoring original design strength of degraded metals. The advent of high velocity spray deposition technologies has allowed deposition of near full density materials. In this review, the fundamental scientific and technological elements of such local additive restoration is contemplated including materials, processes, and methodologies to assess the capabilities of such remanufactured systems. This points to sustainable material reclamation, as well as a route toward resource and process sustainability.
Notes
Acknowledgements
The authors would like to acknowledge Dr. Andrew Vackel, Dr. Xiaotao Luo, and Dr. Brian Choi for their assistance in development of these methodologies and spray practices, as well as Dr. Vackel’s collaboration with the Canadian National Research Council (CNRC) in Boucherville, Canada and at VTT, Finland in producing some of the evaluated coatings. Support comes from the Industrial Consortium for Thermal Spray Technology at Stony Brook University.
References
- 1.H. Herman, S. Sampath, and R. McCune, MRS Bull. 25, 17 (2000).CrossRefGoogle Scholar
- 2.C.U. Hardwicke and Y.-C. Lau, J. Therm. Spray Technol. 22, 564 (2013).CrossRefGoogle Scholar
- 3.P. Fauchais, A. Vardelle, and B. Dussoubs, J. Therm. Spray Technol. 10, 44 (2001).CrossRefGoogle Scholar
- 4.J. Mostaghimi and M.I. Boulos, Plasma Chem. Plasma Process. 35, 421 (2015).CrossRefGoogle Scholar
- 5.S. Kuroda, Y. Tashiro, H. Yumoto, S. Taira, H. Fukanuma, and S. Tobe, J. Therm. Spray Technol. 10, 367 (2001).CrossRefGoogle Scholar
- 6.M.L. Thorpe and H.J. Richter, J. Therm. Spray Technol. 1, 161 (1992).CrossRefGoogle Scholar
- 7.Z. Zeng, N. Sakoda, T. Tajiri, and S. Kuroda, Surf. Coat. Technol. 203, 284 (2008).CrossRefGoogle Scholar
- 8.I.A. Gorlach, Thin Solid Films 517, 5270 (2009).CrossRefGoogle Scholar
- 9.S. Adachi and N. Ueda, Coatings 7, 87 (2017).CrossRefGoogle Scholar
- 10.A. Gouldstone, W.B. Choi, W. Chi, Y. Wu, and S. Sampath, The Cold Spray Materials Deposition Process: Fundamentals and Applications, ed. V.K. Champagne (Cambridge: Woodhead Publishing Ltd, 2007), p. 245.CrossRefGoogle Scholar
- 11.V.K. Champagne, JFAP 8, 164 (2008).CrossRefGoogle Scholar
- 12.A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao, Surf. Eng. 30, 369 (2014).CrossRefGoogle Scholar
- 13.N. Cinca, J.M. Rebled, S. Estradé, F. Peiró, J. Fernández, and J.M. Guilemany, J. Alloys Compd. 554, 89 (2013).CrossRefGoogle Scholar
- 14.S. Sampath, G. Dwivedi, A. Valarezo, and B. Choi, IMMI 2, 1 (2013).Google Scholar
- 15.H.S. Ingham and A.P. Shepard, Flame Spray Handbook (Woodbury: Metco Inc, 1969), p. 168.Google Scholar
- 16.A. Vackel, G. Dwivedi, and S. Sampath, JOM 67, 1540 (2015).CrossRefGoogle Scholar
- 17.R.A. Neiser, M.F. Smith, and R.C. Dykhuizen, J. Therm. Spray Technol. 7, 537 (1998).CrossRefGoogle Scholar
- 18.W.C. Oliver and G.M. Pharr, J. Mater. Res. 19, 3 (2011).CrossRefGoogle Scholar
- 19.R. McPherson, Thin Solid Films 112, 89 (1984).CrossRefGoogle Scholar
- 20.J. Matějíček, S. Sampath, T. Gnäupel-Herold, and H.J. Prask, Appl. Phys. A 74, s1692 (2002).CrossRefGoogle Scholar
- 21.S. Sampath, X.Y. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, and A. Vaidya, Mater. Sci. Eng. A 364, 216 (2004).CrossRefGoogle Scholar
- 22.G. Dwivedi, T. Wentz, S. Sampath, and T. Nakamura, J. Therm. Spray Technol. 19, 695 (2010).CrossRefGoogle Scholar
- 23.T. Suhonen, T. Varis, S. Dosta, M. Torrell, and J.M. Guilemany, Acta Mater. 61, 6329 (2013).CrossRefGoogle Scholar
- 24.J. Matejicek and S. Sampath, Acta Mater. 51, 863 (2003).CrossRefGoogle Scholar
- 25.W.B. Choi, L. Li, V. Luzin, R. Neiser, T. Gnaupel-Herold, H.J. Prask, S. Sampath, and A. Gouldstone, Acta Mater. 55, 857 (2007).CrossRefGoogle Scholar
- 26.V. Luzin, A. Vackel, A. Valarezo, and S. Sampath, Mater. Sci. Forum 905, 165 (2017).CrossRefGoogle Scholar
- 27.V. Luzin, A. Valarezo, and S. Sampath, Mater. Sci. Forum 571, 315 (2008).CrossRefGoogle Scholar
- 28.W.B. Choi, L. Prchlik, S. Sampath, and A. Gouldstone, J. Therm. Spray Technol. 18, 58 (2009).CrossRefGoogle Scholar
- 29.M.B. Beardsley and J.L. Sebright, Report No. DOE/GO14037 (Caterpillar Inc., Peoria, 2008).Google Scholar
- 30.A. Vackel, T. Nakamura, and S. Sampath, J. Therm. Spray Technol. 25, 1009 (2016).CrossRefGoogle Scholar
- 31.G. Smith, O. Higgins, and S. Sampath, Surf. Coat. Technol. 328, 211 (2017).CrossRefGoogle Scholar
- 32.C. Weyant and S. Sampath, ITSSE 6, 64 (2011).Google Scholar