Advertisement

JOM

, Volume 70, Issue 4, pp 512–520 | Cite as

Sustainability of Metal Structures via Spray-Clad Remanufacturing

  • Gregory M. SmithEmail author
  • Sanjay Sampath
Toward Resources and Processes Sustainability

Abstract

Structural reclamation and remanufacturing is an important future design consideration to allow sustainable recovery of degraded structural metals. Heavy machinery and infrastructure components subjected to extended use and/or environment induced degradation require costly and time-consuming replacement. If these parts can be remanufactured to original tolerances, and returned to service with “as good or better” performance, significant reductions in materials, cost, and environmental impact can be achieved. Localized additive restoration via thermal or cold spray methods is a promising approach in recovering and restoring original design strength of degraded metals. The advent of high velocity spray deposition technologies has allowed deposition of near full density materials. In this review, the fundamental scientific and technological elements of such local additive restoration is contemplated including materials, processes, and methodologies to assess the capabilities of such remanufactured systems. This points to sustainable material reclamation, as well as a route toward resource and process sustainability.

Notes

Acknowledgements

The authors would like to acknowledge Dr. Andrew Vackel, Dr. Xiaotao Luo, and Dr. Brian Choi for their assistance in development of these methodologies and spray practices, as well as Dr. Vackel’s collaboration with the Canadian National Research Council (CNRC) in Boucherville, Canada and at VTT, Finland in producing some of the evaluated coatings. Support comes from the Industrial Consortium for Thermal Spray Technology at Stony Brook University.

References

  1. 1.
    H. Herman, S. Sampath, and R. McCune, MRS Bull. 25, 17 (2000).CrossRefGoogle Scholar
  2. 2.
    C.U. Hardwicke and Y.-C. Lau, J. Therm. Spray Technol. 22, 564 (2013).CrossRefGoogle Scholar
  3. 3.
    P. Fauchais, A. Vardelle, and B. Dussoubs, J. Therm. Spray Technol. 10, 44 (2001).CrossRefGoogle Scholar
  4. 4.
    J. Mostaghimi and M.I. Boulos, Plasma Chem. Plasma Process. 35, 421 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Kuroda, Y. Tashiro, H. Yumoto, S. Taira, H. Fukanuma, and S. Tobe, J. Therm. Spray Technol. 10, 367 (2001).CrossRefGoogle Scholar
  6. 6.
    M.L. Thorpe and H.J. Richter, J. Therm. Spray Technol. 1, 161 (1992).CrossRefGoogle Scholar
  7. 7.
    Z. Zeng, N. Sakoda, T. Tajiri, and S. Kuroda, Surf. Coat. Technol. 203, 284 (2008).CrossRefGoogle Scholar
  8. 8.
    I.A. Gorlach, Thin Solid Films 517, 5270 (2009).CrossRefGoogle Scholar
  9. 9.
    S. Adachi and N. Ueda, Coatings 7, 87 (2017).CrossRefGoogle Scholar
  10. 10.
    A. Gouldstone, W.B. Choi, W. Chi, Y. Wu, and S. Sampath, The Cold Spray Materials Deposition Process: Fundamentals and Applications, ed. V.K. Champagne (Cambridge: Woodhead Publishing Ltd, 2007), p. 245.CrossRefGoogle Scholar
  11. 11.
    V.K. Champagne, JFAP 8, 164 (2008).CrossRefGoogle Scholar
  12. 12.
    A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao, Surf. Eng. 30, 369 (2014).CrossRefGoogle Scholar
  13. 13.
    N. Cinca, J.M. Rebled, S. Estradé, F. Peiró, J. Fernández, and J.M. Guilemany, J. Alloys Compd. 554, 89 (2013).CrossRefGoogle Scholar
  14. 14.
    S. Sampath, G. Dwivedi, A. Valarezo, and B. Choi, IMMI 2, 1 (2013).Google Scholar
  15. 15.
    H.S. Ingham and A.P. Shepard, Flame Spray Handbook (Woodbury: Metco Inc, 1969), p. 168.Google Scholar
  16. 16.
    A. Vackel, G. Dwivedi, and S. Sampath, JOM 67, 1540 (2015).CrossRefGoogle Scholar
  17. 17.
    R.A. Neiser, M.F. Smith, and R.C. Dykhuizen, J. Therm. Spray Technol. 7, 537 (1998).CrossRefGoogle Scholar
  18. 18.
    W.C. Oliver and G.M. Pharr, J. Mater. Res. 19, 3 (2011).CrossRefGoogle Scholar
  19. 19.
    R. McPherson, Thin Solid Films 112, 89 (1984).CrossRefGoogle Scholar
  20. 20.
    J. Matějíček, S. Sampath, T. Gnäupel-Herold, and H.J. Prask, Appl. Phys. A 74, s1692 (2002).CrossRefGoogle Scholar
  21. 21.
    S. Sampath, X.Y. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, and A. Vaidya, Mater. Sci. Eng. A 364, 216 (2004).CrossRefGoogle Scholar
  22. 22.
    G. Dwivedi, T. Wentz, S. Sampath, and T. Nakamura, J. Therm. Spray Technol. 19, 695 (2010).CrossRefGoogle Scholar
  23. 23.
    T. Suhonen, T. Varis, S. Dosta, M. Torrell, and J.M. Guilemany, Acta Mater. 61, 6329 (2013).CrossRefGoogle Scholar
  24. 24.
    J. Matejicek and S. Sampath, Acta Mater. 51, 863 (2003).CrossRefGoogle Scholar
  25. 25.
    W.B. Choi, L. Li, V. Luzin, R. Neiser, T. Gnaupel-Herold, H.J. Prask, S. Sampath, and A. Gouldstone, Acta Mater. 55, 857 (2007).CrossRefGoogle Scholar
  26. 26.
    V. Luzin, A. Vackel, A. Valarezo, and S. Sampath, Mater. Sci. Forum 905, 165 (2017).CrossRefGoogle Scholar
  27. 27.
    V. Luzin, A. Valarezo, and S. Sampath, Mater. Sci. Forum 571, 315 (2008).CrossRefGoogle Scholar
  28. 28.
    W.B. Choi, L. Prchlik, S. Sampath, and A. Gouldstone, J. Therm. Spray Technol. 18, 58 (2009).CrossRefGoogle Scholar
  29. 29.
    M.B. Beardsley and J.L. Sebright, Report No. DOE/GO14037 (Caterpillar Inc., Peoria, 2008).Google Scholar
  30. 30.
    A. Vackel, T. Nakamura, and S. Sampath, J. Therm. Spray Technol. 25, 1009 (2016).CrossRefGoogle Scholar
  31. 31.
    G. Smith, O. Higgins, and S. Sampath, Surf. Coat. Technol. 328, 211 (2017).CrossRefGoogle Scholar
  32. 32.
    C. Weyant and S. Sampath, ITSSE 6, 64 (2011).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Center for Thermal Spray Research, Department of Materials Science and EngineeringStony Brook UniversityStony BrookUSA

Personalised recommendations