Skip to main content
Log in

The Influence of Pseudomonas fluorescens on Corrosion Products of Archaeological Tin-Bronze Analogues

  • Technical Communication
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, tin-bronze analogues of archaeological objects were investigated in the presence of an aerobic Pseudomonas fluorescens strain in a solution, containing chlorides, sulfates, carbonates and nitrates according to a previous archaeological characterization. Classical fixation protocols were employed in order to verify the attachment capacity of such bacteria. In addition, classical metallurgical analytical techniques were used to detect the effect of bacteria on the formation of uncommon corrosion products in such an environment. Results indicate quite a good attachment capacity of the bacteria to the metallic surface and the formation of the uncommon corrosion products sulfates and sulfides is probably connected to the bacterial metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. W.G. Characklis and K.C. Marshall, Biofilms (New York: Wiley, 1990).

    Google Scholar 

  2. B.J. Little and J.S. Lee, Microbiologically Influenced Corrosion (Hoboken: Wiley, 2007).

    Book  Google Scholar 

  3. P. Cristiani, G. Perboni, and A. Debenedetti, in Biocorys 2007 International Conference on Biocorrosion and Materials, (2007) Paris, 11–14 June 2007, Congress Acts.

  4. W.A. Chiou, N. Kohyama, B.J. Little, P.A. Wagner, M. Meshii, in Proceedings of Microscopy and Microanalysis, ed. G.W. Bailey, J.M. Corbett, R.V.M. Dimlich, J.R. Michael, N.J. Zaluzec (San Francisco; San Francisco Press, Inc., 1996), pp. 220–221.

  5. C.A.H. von Wolzogen Kühr and L.S. van der Vlugt, Water 18, 147 (1934).

    Google Scholar 

  6. W. Sun and S. Nešic, Corrosion 2007. Paper 07655.

  7. I.B. Beech, C.W.S. Chan, M.A. Hill, R. Franco, and A.R. Lino, Biodeterm. Biodegrad. 34, 289 (1994).

    Article  Google Scholar 

  8. A. Sanchez del Junco, D.A. Moreno, C. Ranninger, J.J. Ortega-Calvo, and C. Saiz-Jimenez, Int. Biodeterior. Biodegrad. 29, 367 (1992).

    Article  Google Scholar 

  9. C. Rémazeilles, M. Saheb, D. Neff, E. Guilminot, K. Tran, J.A. Bourdoiseau, R. Sabot, M. Jeannin, H. Matthiesen, P. Dillmann, P. Réfait, and J. Raman, Spectroscopy 41, 1425 (2010).

    Google Scholar 

  10. M.B. McNeil and B.J. Little, J. Am. Inst. Conserv. 38, 186 (1999).

    Article  Google Scholar 

  11. C. Rémazeilles, A. Dheilly, S. Sable, I. Lanneluc, D. Neff, and P. Refait, CEST 45, 388 (2010).

    Article  Google Scholar 

  12. I.D. MacLeod, Corros. Australas. 14, 8 (1989).

    Google Scholar 

  13. R.F. Tylecote, Int. J. Naut. Archaeol. Underw. Explor. 6, 269–283 (1977).

    Article  Google Scholar 

  14. L. Robbiola, J.M. Blengino, and C. Fiaud, Corros. Sci. 40, 2083 (1998).

    Article  Google Scholar 

  15. M.P. Casaletto, T. De Caro, G.M. Ingo, and C. Riccucci, Appl. Phys. A 83, 611 (2006).

    Article  Google Scholar 

  16. P. Piccardo, B. Mille, and L. Robbiola, Corrosion of Metallic Heritage Artefacts—Investigation, Conservation and Prediction of Long-Term Behaviour, ed. P. Dillmann, G. Beranger, P. Piccardo, and H. Matthiesen (Cambridge: Woodhead, 2007), p. 239.

    Google Scholar 

  17. D.A. Scott, J. Am. Inst. Conserv. 29, 193 (1990).

    Article  Google Scholar 

  18. I. Constantinides, A. Adriaens, and F. Adams, Appl. Surf. Sci. 189, 90 (2002).

    Article  Google Scholar 

  19. I.G. Sandu, O. Mircea, V. Vasilache, and I. Sandu, Microsc. Res. Tech. 75, 1646 (2012).

    Article  Google Scholar 

  20. G.M. Ingo, T. de Caro, C. Riccucci, and S. Khosroff, Appl. Phys. A 83, 581 (2006).

    Article  Google Scholar 

  21. P. Piccardo, M. Mödlinger, G. Ghiara, S. Campodonico, and V. Bongiorno, Appl. Phys. A 13, 1039 (2013).

    Article  Google Scholar 

  22. JDS S I, Joint Danube Survey 3. A comprehensive analysis of danube water quality (Vienna: ICPDR—International Commission for the Protection of the Danube River, 2015).

    Google Scholar 

  23. C. Kittinger, M. Lipp, R. Baumert, B. Folli, G. Koraimann, D. Toplitsch, A. Liebmann, A.J. Grisold, A.H. Farnleitner, A. Kirschner, and G. Zarfel, Front. Microbiol. 7, 1 (2016).

    Article  Google Scholar 

  24. A. Reyes, M.V. Letelier, R. De la Iglesia, B. Gonzalez, and G. Lagosa, Int. Biodeterior. Biodegrad. 61, 135 (2008).

    Article  Google Scholar 

  25. M.B. Valcarce, S.R. de Sanchez, and M. Vazquez, Corros. Sci. 47, 795 (2005).

    Article  Google Scholar 

  26. M.B. Valcarce, J.P. Busalmen, and S.R. de Sanchez, Int. Biodeterior. Biodegrad. 50, 61 (2002).

    Article  Google Scholar 

  27. G. Sello, S. Bernasconi, F. Orsini, P. Mattavelli, P. Di Gennaro, and G. Bestetti, J. Molecul Catal. B Enzymatic 52, 67 (2008).

    Article  Google Scholar 

  28. D.J. McDougall, Am Mineralogist 37, 427 (1952).

    Google Scholar 

  29. B.J. Little, Biofouling 9, 251 (1996).

    Article  Google Scholar 

  30. G. Borkow and J. Gabbay, Copper as a Biocidal Tool (Richmond: Cupron Inc, 2004).

    Google Scholar 

  31. A. Elfström Broo, B. Berghult, and T. Hedberg, Corros. Sci. 39, 1119 (1997).

    Article  Google Scholar 

  32. N. Boulay and M. Edwards, Water Res. 35, 683 (2001).

    Article  Google Scholar 

  33. P.K. Hong and Y. MacCauley, Water Air Soil Pollut. 108, 457 (1998).

    Article  Google Scholar 

  34. J.S. Chang, R. Law, and C.C. Chang, Water Res. 31, 1651 (1997).

    Article  Google Scholar 

  35. M.M. Baum, A. Kainović, T. O’Keeffe, R. Pandita, K. McDonald, S. Wu, and P. Webster, BMC Microbiol. 9, 103 (2009).

    Article  Google Scholar 

  36. B.J. Little, P. Wagner, R. Ray, R. Pope, and R. Scheetz, J. Ind. Microbiol. 8, 213 (1991).

    Article  Google Scholar 

  37. S.J. Yuan, A.M.F. Choong, and S.O. Pehkonen, Corros. Sci. 49, 4352 (2007).

    Article  Google Scholar 

  38. H.H.P. Fang, L.C. Xu, and K.Y. Chan, Water Res. 36, 4709 (2002).

    Article  Google Scholar 

  39. S. Jacobs and M. Edwards, Water Res. 34, 2798 (2000).

    Article  Google Scholar 

  40. H.E. Ostland and J. Alexander, J. Geophys. Res. 68, 3995 (1963).

    Article  Google Scholar 

  41. T. Dabrowski, E. Kolakowski, and B. Karnicka, J. Fish. Res. Board Can. 26, 2969 (1969).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Peter Robinson and Kathryn Counts for their wise and fruitful advice in the article editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ghiara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiara, G., Grande, C., Ferrando, S. et al. The Influence of Pseudomonas fluorescens on Corrosion Products of Archaeological Tin-Bronze Analogues. JOM 70, 81–85 (2018). https://doi.org/10.1007/s11837-017-2674-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2674-2

Navigation