Skip to main content
Log in

Biofilms: An ESEM evaluation of artifacts introduced during SEM preparation

  • Review
  • Published:
Journal of Industrial Microbiology

Summary

Descriptions of biofilms and their elemental compositions based on scanning electron micrographs and energy dispersive x-ray analysis cannot be related to the original condition of the biofilm on the surface. Solvent replacement of water removes extracellular polymeric material and reduces the concentration of elements bound within the biofilm. In the wet state, bacteria and microalgae are enmeshed in a gelatinous film that is either removed or dried to a thin inconspicuous residue during sample preparation for scanning electron microscopy. The environmental scanning electron microscope provides a fast, accurate image of biofilms, their spatial relationship to the substratum and elemental composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baier, R.E. 1975. Applied chemistry at protein interfaces. In: Advances in Chemistry, Series 145. American Chemistry Society, Washington, D.C., 399 pp.

    Google Scholar 

  2. Battersby, B.L. 1988. Sulphate-reducing bacteria. In: Methods in Aquatic Bacteriology (Austin, B., ed.), pp. 269–299, John Wiley and Sons, NY.

    Google Scholar 

  3. Beaman, D.R., J.A. Isasi. 1974. Electron Beam Microanalysis. ASTM STP 506, Philadelphia, PA.

  4. Blunn, G. 1986. Biological fouling of copper and copper alloys. In: Biodeterioration VI, pp. 567–575, CAB Int., Slough, Barkshire.

    Google Scholar 

  5. Chandra, D., P. Roy, A.K. Mishra, J.N. Chakrabarti and B. Sengupta. 1979. Microbial removal of organic sulfur from coal. Fuel 58: 549.

    Google Scholar 

  6. Characklis, W., M. Turakhia and N. Zelver. 1990. Transport and interfacial transfer phenomena. Biofilms. (Characklis, W.G. and K.C. Marshall, eds.), pp. 265–340, John Wiley and Sons, New York, NY.

    Google Scholar 

  7. Ciba Foundation Symposium. 1980. Adhesion and Microorganism Pathogenicity. Pitman Medical Press, Bath, Avon.

    Google Scholar 

  8. Cooksey K.E. and B. Cooksey. 1986. Adhesion of fouling diatoms to surfaces: some biochemistry. In: Algal Biofouling (Evans, L.V. and Hoagland, K.D., eds.), pp. 41–53, Elsevier, New York, NY.

    Google Scholar 

  9. Corpe W.A. 1975. Metal-binding properties of surface materials from marine bacteria. Dev. Industr. Microbiol. 16: 249–255.

    Google Scholar 

  10. Costerton, J.W. and G.G. Geesey. 1986. The microbial ecology of surface colonization and of consequent corrosion. In: Biologically Induced Corrosion (Dexter, S.C., ed.), pp. 223–232. NACE, Houston.

    Google Scholar 

  11. Costerton, J.W., G.G. Geesey and K.J. Cheng, 1978. How bacteria stick. Sci. Am. 238: 86–95.

    Google Scholar 

  12. Daniel, G.F., A.H.L. Chamberlain, and E.B.G. Jones. 1980. Ultrastructural observations on the marine fouling diatom Amphora. Helgolander Wiss. Meeresunters, 34: 123–149.

    Google Scholar 

  13. P. Duncumb and S.J.B. Reed. 1968. The calculation of stopping power and backscatter effects in the electron probe microanalysis. In: Quantitative Electron Probe Microanalysis (Heinrich, K.F.J., ed.), NBS Special Publication 298, p. 133.

  14. Ehrlich, H.L. 1981. Geomicrobiology. Marcel Dekker, New York, NY.

    Google Scholar 

  15. Ehrlich, H.L. and C.L. Brierley. 1990. Microbial Mineral Recovery. McGraw-Hill Publishing Co., New York, NY.

    Google Scholar 

  16. Grady, C.P.L. and H.C. Lim. 1980 Biological Wastewater Treatment. Marcel Dekker. New York, NY.

    Google Scholar 

  17. Gudas, J.P. and H.P. Hack. 1979. Sulfide-induced corrosion of copper-nickel alloys. Corrosion 35: 67–73.

    Google Scholar 

  18. Heinrich, K.F.J. 1986. Proc. 11th International Conference, X-Ray Optics and Microanalysis, London, Ontario.

  19. Henke, B.L., P. Lee, T.J. Tanaka, R.L. Shimabukuro and B.K. Fujikawa. 1982. Atomic Data and Nuclear Data Tables 27: 1–144.

    Google Scholar 

  20. Kargi, F. and J.M. Robinson. 1982. Microbial desulfurization of coal by thermophilic microorganismsSulfolobus acidocaldarius. Biotechnol. Bioeng. 24: 2115.

    Google Scholar 

  21. Lawrence, R.W. and A. Bruynesteyn. 1983. Biological preoxidation to enhance gold and silver recovery from refractory pyritic ores and concentrates. CIM Bull. 76: 107.

    Google Scholar 

  22. Little, B., R. Ray, P. Wagner, Z. Lewandowski, W.C. Lee, W.G. Characklis and F. Mansfeld. 1990. Electrochemical behavior of stainless steels in natural seawater. Corrosion/90, paper no. 150, NACE, Houston.

    Google Scholar 

  23. Little, B., P. Wagner and J. Jacobus. 1988. The impact of sulfate-reducing bacteria on welded copper-nickel seawater piping systems. Mat. Perf. 27: 57–61.

    Google Scholar 

  24. Little, B., P. Wagner, J. Jacobus and L. Janus. 1989. Evaluation of microbiologically induced corrosion in an estuary. Estuaries 12: 138–141.

    Google Scholar 

  25. Little, B.J., P. Wagner, J.S. Maki, M. Walch and R. Mitchell. 1986. Factors influencing the adhesion of microorganisms to surfaces. J. Adhesion 20: 187.

    Google Scholar 

  26. Little, B., P. Wagner and F. Mansfeld. 1991. An overview of microbiologically influenced corrosion of metals and alloys. International Materials Review, in press.

  27. Little, B., P. Wagner, R. Ray and J. Jones. 1990. Microbiologically influenced corrosion of copper alloys in saline water containing sulfate-reducing bacteria. Corrosion/91, paper no. 101, NACE, Houston.

    Google Scholar 

  28. Mansfeld, F., A. Postyn, H. Shih, J. Devinny, R. Islander and C.L. Chen. 1990. Corrosion monitoring and control in concrete sewer pipes. In: Proc. Corrosion/90, paper no. 113, NACE, Houston.

    Google Scholar 

  29. Marshall, K.C. 1976. Interfaces in Microbial Ecology. Harvard University Press, Cambridge, MA.

    Google Scholar 

  30. Marszalek, D.S., M. Gerchakov and L.R. Udey. 1979. Influence of substrate composition on marine microfouling. Appl. Environ. Microbiol. 38: 987.

    Google Scholar 

  31. McEldowney, S. and M. Fletcher. 1988. Bacterial desorption from food container and food processing surfaces. Microb. Ecol. 15: 229.

    Google Scholar 

  32. Mitchell, R. and D. Kirchman. 1981. The microbial ecology of marine surfaces. In: Marine Biodeterioration (Costlow, J.D. and R.C. Tipper, eds.), pp. 49–56, Naval Institute Press, Annapolis, MD.

    Google Scholar 

  33. Mittleman, M.W. and G. Geesey. 1987. Fouling of industrial water systems: A problem solving approach, pp. 138–193. Water Micro Associates, San Diego, CA.

    Google Scholar 

  34. Moreton, B.B. and T.G. Glover. 1980. New marine industry applications for corrosion and biofouling resistant, coppernickel alloys. In: Proc. 5th Int. Congr. Marine Corrosion and Fouling, p. 267. Biologia Marina, Barcelona, Spain.

    Google Scholar 

  35. Nickol, G.F. 1979. Vinegar. In: Microbial Tech. (Poppler, H.J. and D. Perlman, eds.), Chapter 6, Academic Press, New York, NY.

    Google Scholar 

  36. Nilsson, I. and S. Ohlson. 1982. Columnar denitrification of water by immobilizedPseudomonas denitrificans cells. Europ. J. Appl. Microbiol. Biotechnol. 14: 86.

    Google Scholar 

  37. Nilsson, I., S. Ohlson, L. Haggstrom, N. Molin, and K. Mosbach. 1980. Denitrification of water using immobilizedPseudomonas denitrificans cells. Europ. J. Appl. Microbiol. Biotechnol. 10: 261.

    Google Scholar 

  38. North, N.A. and I.D. MacLeod. 1987. Corrosion of metals. In: Conservation of Archeological Objects (Pearson, C., ed.), pp. 68–98, Butterworths, London.

    Google Scholar 

  39. Pfennig, N., F. Widdel, and H.G. Truper. 1981. The dissimulatory sulfate-reducing bacteria. In: The Prokaryotes: A Handbook on Habitats (Starr, M.P., Stolp, M., Trüper, H.G., Balows, A. and Schlegel, H.G., eds.), pp. 926–940, Springer-Verlag, New York, NY.

    Google Scholar 

  40. Postgate, J.R. 1979. Cultivation and growth. The Sulfate-Reducing Bacteria (Postgate, J.R., ed.), pp. 24–40, Cambridge University Press, London.

    Google Scholar 

  41. Ribbe, P.H. (ed.). 1976. Sulfide Mineralogy. Mineralogical Society of America, Washington, D.C.

    Google Scholar 

  42. Rowlands, J.C. 1965. Corrosion of tube and pipe alloys due to polluted seawater. J. Appl. Chem. 15: 57–63.

    Google Scholar 

  43. Sieburth, J.M. 1975. A Pictorial Essay on Marine Microorganisms and Their Environments. University Press, Baltimore, MD.

    Google Scholar 

  44. Staffeldt, E.E. and D.A. Kohler. 1973. Assessment of corrosion products removed from “La Fortuna”, Punta del Mar., Venezia. Petrolia e Ambiente, pp. 163–170.

  45. Syrett, B.C. 1980. The mechanism of accelerated corrosion of copper-nickel alloys in sulfide polluted seawater. Corrosion/80, paper no. 33, NACE, Houston.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Little, B., Wagner, P., Ray, R. et al. Biofilms: An ESEM evaluation of artifacts introduced during SEM preparation. Journal of Industrial Microbiology 8, 213–221 (1991). https://doi.org/10.1007/BF01576058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01576058

Key words

Navigation