Skip to main content
Log in

Effect of Titanium on the Smelting Process of Chromium-Bearing Vanadium Titanomagnetite Pellets

  • Adaptive Metallurgical Processing Technologies for Strategic Metal Recycling
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study discusses the smelting behaviors of chromium-bearing vanadium titanomagnetite pellets (CVTP) with TiO2 additions. The results show that the softening start temperature T10% increases from 1148°C to 1215°C, and the softening end temperature T40% increases from 1280°C to 1336°C. The melting start temperature TS increases from 1318°C to 1352°C and the dripping temperature TD decreases from 1558°C to 1505°C. The primary phases of slag are (Ti0.7V0.3)2O3, (Mg0.6Ti2.4)O5, MgSiO3, and MgTi2O5, and the equilibrium phases calculated by FactSage 7.0 verify the primary phases. The titanium-vanadium compound as an intermediate reactant is generated at the interface of pig iron and slag. The FT-IR results show the depolymerization of slag, which results in the improvement of the softening–melting behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Gan, Z.Y. Ji, X.H. Fan, W. Lv, R.Y. Zheng, X.L. Chen, S. Liu, and T. Jiang, Powder Technol. 333, 385. (2018).

    Article  Google Scholar 

  2. M. Gan, Y.F. Sun, X.H. Fan, Z.Y. Ji, W. Lv, X.L. Chen, and T. Jiang, Ironmak. Steelmak. 47, 130. (2018).

    Article  Google Scholar 

  3. T.L. Li, C.Y. Sun, D. Lan, J. Song, S. Song, and Q. Wang, ISIJ Int. 59, 245. (2019).

    Article  Google Scholar 

  4. K. Zhou, J.Q. Song, Z.X. You, H.E. Xie, and X.W. Lv, ISIJ Int. 60, 1409. (2020).

    Article  Google Scholar 

  5. J.L. Liao, J. Li, X.D. Wang, and Z.T. Zhang, Ironmak. Steelmak. 39, 133. (2012).

    Article  Google Scholar 

  6. I.I. Sohn, W.L. Wang, H. Matsuura, F. Tsukihashi, and D.J. Min, ISIJ Int. 52, 158. (2012).

    Article  Google Scholar 

  7. A. Shankar, M. Görnerup, A.K. Lahiri, and S. Seetharaman, Metall. Trans. B 38B, 911. (2007).

    Article  Google Scholar 

  8. K. Zheng, Z.T. Zhang, L.L. Liu, and X.D. Wang, Metall. Trans. B 45B, 1389. (2014).

    Article  Google Scholar 

  9. Y.H. Gao, L.T. Bian, and Z.Y. Liang, Steel Res. Int. 86, 386. (2015).

    Article  Google Scholar 

  10. T.L. Li, C.Y. Sun, S. Song, and Q. Wang, Metals 9, 743. (2019).

    Article  Google Scholar 

  11. K.X. Jiao, J.L. Zhang, Z.Y. Wang, C.L. Chen, and Y.X. Liu, Steel Res. Int. 88, 1600296. (2017).

    Article  Google Scholar 

  12. S.T. Yang, W.D. Tang, M. Zhou, T. Jiang, X.X. Xue, and W.J. Zhang, Minerals 7, 210. (2017).

    Article  Google Scholar 

  13. S.T. Yang, M. Zhou, W.D. Tang, T. Jiang, X.X. Xue, and W.J. Zhang, Minerals 7, 107. (2017).

    Article  Google Scholar 

  14. M. Handke, M. Sitarz, and W. Mozgawa, J. Mol. Struct. 450, 229. (1998).

    Article  Google Scholar 

  15. M. Sitarz, M. Handke, W. Mozgawa, E. Galuskin, and I. Galuskina, J. Mol. Struct. 555, 357. (2000).

    Article  Google Scholar 

  16. M. Sitarz, M. Handke, and W. Mozgawa, Spectrochim. Acta Part A 56, 1819. (2000).

    Article  Google Scholar 

  17. D.M. Zirl, and S.H. Garofalini, J. Am. Ceram. Soc. 73, 2848. (1990).

    Article  Google Scholar 

  18. P. Tarte, Spectrochim. Acta Part A 23, 2127. (1967).

    Article  Google Scholar 

  19. H. Kim, W.H. Kim, Il. Sohn, and D.J. Min, Steel Res Int. 81, 261. (2010).

    Article  Google Scholar 

  20. J. Qi, C.J. Liu, and M.F. Jiang, J Non-Cryst Solids. 475, 101. (2017).

    Article  Google Scholar 

  21. S.F. Zhang, X. Zhang, H.J. Peng, L.Y. Wen, G.B. Qiu, M.L. Hu, and C.G. Bai, ISIJ Int. 54, 734. (2014).

    Article  Google Scholar 

  22. H. Park, J.Y. Park, G.H. Kim, and Il. Sohn, Steel Res Int. 83, 150. (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are especially thankful to the National Natural Science Foundation of China (Grant Nos. 51674084 and 21908020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Tang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 871 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Yang, S. & Xue, X. Effect of Titanium on the Smelting Process of Chromium-Bearing Vanadium Titanomagnetite Pellets. JOM 73, 1362–1370 (2021). https://doi.org/10.1007/s11837-021-04608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04608-y

Navigation