Skip to main content
Log in

Crystal Plasticity Modeling of Microstructure Evolution and Mechanical Fields During Processing of Metals Using Spectral Databases

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article reviews the advances made in the development and implementation of a novel approach to speeding up crystal plasticity simulations of metal processing by one to three orders of magnitude when compared with the conventional approaches, depending on the specific details of implementation. This is mainly accomplished through the use of spectral crystal plasticity (SCP) databases grounded in the compact representation of the functions central to crystal plasticity computations. A key benefit of the databases is that they allow for a noniterative retrieval of constitutive solutions for any arbitrary plastic stretching tensor (i.e., deformation mode) imposed on a crystal of arbitrary orientation. The article emphasizes the latest developments in terms of embedding SCP databases within implicit finite elements. To illustrate the potential of these novel implementations, the results from several process modeling applications including equichannel angular extrusion and rolling are presented and compared with experimental measurements and predictions from other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. U.F. Kocks, C.N. Tomé, and H.-R. Wenk, Texture and Anisotropy (Cambridge: Cambridge University Press, 1998).

    MATH  Google Scholar 

  2. U.F. Kocks and H. Mecking, Progr. Mater. Sci. 48, 171 (2003).

    Article  Google Scholar 

  3. R.J. Asaro and A. Needleman, Acta Metall. Mater. 33, 923 (1985).

    Article  Google Scholar 

  4. K.K. Mathur and P.R. Dawson, Int. J. Plast 5, 67 (1989).

    Article  Google Scholar 

  5. M. Knezevic, J. Crapps, I.J. Beyerlein, D.R. Coughlin, K.D. Clarke, and R.J. McCabe, Int. J. Mech. Sci. 105, 227 (2016).

    Article  Google Scholar 

  6. N. Barton, J. Bernier, J. Knap, A. Sunwoo, E. Cerreta, and T. Turner, Int. J. Numer. Methods Eng. 86, 744 (2011).

    Article  Google Scholar 

  7. J.H. Panchal, S.R. Kalidindi, and D.L. McDowell, Comput. Aided Des. 45, 4 (2013).

    Article  Google Scholar 

  8. Y. Mellbin, H. Hallberg, and M. Ristinmaa, Int. J. Numer. Methods Eng. 100, 111 (2014).

    Article  Google Scholar 

  9. B. Mihaila, M. Knezevic, and A. Cardenas, Int. J. Numer. Methods Eng. 97, 785 (2014).

    Article  Google Scholar 

  10. D.J. Savage and M. Knezevic, Comput. Mech. 56, 677 (2015).

    Article  MathSciNet  Google Scholar 

  11. K. Chockalingam, M.R. Tonks, J.D. Hales, D.R. Gaston, P.C. Millett, and L. Zhang, Comput. Mech. 51, 617 (2013).

    Article  MathSciNet  Google Scholar 

  12. D.S. Li, H. Garmestani, and S. Schoenfeld, Scr. Mater. 49, 867 (2003).

    Article  Google Scholar 

  13. S.R. Kalidindi, H.K. Duvvuru, and M. Knezevic, Acta Mater. 54, 1795 (2006).

    Article  Google Scholar 

  14. M. Knezevic and S.R. Kalidindi, Comput. Mater. Sci. 39, 643 (2007).

    Article  Google Scholar 

  15. M. Knezevic and N.W. Landry, Mech. Mater. 88, 73 (2015).

    Article  Google Scholar 

  16. M. Knezevic, H.F. Al-Harbi, and S.R. Kalidindi, Acta Mater. 57, 1777 (2009).

    Article  Google Scholar 

  17. H.F. Al-Harbi, M. Knezevic, and S.R. Kalidindi, CMC Comput. Mater. Contin. 15, 153 (2010).

    Google Scholar 

  18. M. Knezevic, S.R. Kalidindi, and D. Fullwood, Int. J. Plast 24, 1264 (2008).

    Article  Google Scholar 

  19. S.R. Kalidindi, M. Knezevic, S. Niezgoda, and J. Shaffer, Acta Mater. 57, 3916 (2009).

    Article  Google Scholar 

  20. N. Landry and M. Knezevic, Materials 8, 6326 (2015).

    Article  Google Scholar 

  21. N.R. Barton, J. Knap, A. Arsenlis, R. Becker, R.D. Hornung, and D.R. Jefferson, Int. J. Plast 24, 242 (2008).

    Article  Google Scholar 

  22. N.R. Barton, J.V. Bernier, R.A. Lebensohn, and D.E. Boyce, Comput. Methods Appl. Mech. Eng. 283, 224 (2015).

    Article  Google Scholar 

  23. G.I. Taylor and H. Quinney, Philos. Trans. R. Soc. A 230, 323 (1932).

    Article  Google Scholar 

  24. R.A. Lebensohn and C.N. Tomé, Acta Metall. Mater. 41, 2611 (1993).

    Article  Google Scholar 

  25. A.J. Beaudoin, K.K. Mathur, P.R. Dawson, and G.C. Johnson, Int. J. Plast 9, 833 (1993).

    Article  Google Scholar 

  26. M. Knezevic, R.J. McCabe, R.A. Lebensohn, C.N. Tomé, C. Liu, M.L. Lovato, and B. Mihaila, J. Mech. Phys. Solids 61, 2034 (2013).

    Article  Google Scholar 

  27. S.R. Kalidindi, C.A. Bronkhorst, and L. Anand, J. Mech. Phys. Solids 40, 537 (1992).

    Article  Google Scholar 

  28. M. Ardeljan, R.J. McCabe, I.J. Beyerlein, and M. Knezevic, Comput. Methods Appl. Mech. Eng. 295, 396 (2015).

    Article  Google Scholar 

  29. R. Lebensohn, Acta Mater. 49, 2723 (2001).

    Article  Google Scholar 

  30. B. Liu, D. Raabe, F. Roters, P. Eisenlohr, and R. Lebensohn, Modell. Simul. Mater. Sci. Eng. 18, 085005 (2010).

    Article  Google Scholar 

  31. D. Peirce, R.J. Asaro, and A. Needleman, Acta Metall. 30, 1087 (1982).

    Article  Google Scholar 

  32. T. Mura, Micromechanics of Defects in Solids (Netherlands: Martinus Nijhoff Publishers, 1987).

    Book  MATH  Google Scholar 

  33. H. Moulinec and P. Suquet, Comput. Methods Appl. Mech. Eng. 157, 69 (1998).

    Article  Google Scholar 

  34. J.B. Shaffer, M. Knezevic, and S.R. Kalidindi, Int. J. Plast 26, 1183 (2010).

    Article  Google Scholar 

  35. W.L. Briggs and V.E. Henson, The DFT: An Owner’s Manual for the Discrete Fourier Transform (Philadelphia: Society for Industrial and Applied Mathematics, 1995).

    Book  MATH  Google Scholar 

  36. M. Knezevic and D.J. Savage, Comput. Mater. Sci. 83, 101 (2014).

    Article  Google Scholar 

  37. H.F. Al-Harbi and S.R. Kalidindi, Int. J. Plast 66, 71 (2015).

    Article  Google Scholar 

  38. M. Zecevic, R.J. McCabe, and M. Knezevic, Mech. Mater. 84, 114 (2015).

    Article  Google Scholar 

  39. M. Zecevic, R.J. McCabe, and M. Knezevic, Int. J. Plast 70, 151 (2015).

    Article  Google Scholar 

  40. J.W. Hutchinson, Proc. R. Soc. Lond. Ser. A 348, 101 (1976).

    Article  Google Scholar 

  41. L. Armijo, Pacific J. Math. 16, 1 (1966).

    Article  MathSciNet  Google Scholar 

  42. E. Voce, J. Inst. Met. 74, 537 (1948).

    Google Scholar 

  43. H.-J. Bunge, Texture Analysis in Materials Science. Mathematical Methods (Göttingen: Cuvillier Verlag, 1993).

    Google Scholar 

  44. P. Van Houtte, Int. J. Plast 10, 719 (1994).

    Article  Google Scholar 

  45. M. Knezevic, S.R. Kalidindi, and R.K. Mishra, Int. J. Plast 24, 327 (2008).

    Article  Google Scholar 

  46. R. Hill and J.R. Rice, J. Mech. Phys. Solids 20, 401 (1972).

    Article  Google Scholar 

  47. J. Segurado, R.A. Lebensohn, J. Llorca, and C.N. Tomé, Int. J. Plast 28, 124 (2012).

    Article  Google Scholar 

  48. I.J. Beyerlein, S. Li, C.T. Necker, D.J. Alexander, and C.N. Tomé, Philos. Mag. 85, 1359 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

M. K. gratefully acknowledges support from the U.S. National Science Foundation under Grant 1541918. S. R. K. wishes to acknowledge support from ONR N00014-15-1-2478.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Knezevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knezevic, M., Kalidindi, S.R. Crystal Plasticity Modeling of Microstructure Evolution and Mechanical Fields During Processing of Metals Using Spectral Databases. JOM 69, 830–838 (2017). https://doi.org/10.1007/s11837-017-2289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2289-7

Keywords

Navigation