Skip to main content
Log in

Recrystallization and Grain Growth in Accumulative Roll-Bonded Metal Composites

  • Published:
JOM Aims and scope Submit manuscript

Abstract

We examine recrystallization and grain growth during processing of accumulative roll-bonded (ARB) Cu-Nb and Zr-Nb composites. Throughout the ARB process, from initial millimeter thick layers down to nanometer thick layers, the mechanism for recrystallization and grain growth is the motion of high-angle grain boundaries (HAGBs). However, the driving forces for these phenomena change as the densities of different types of defects evolve during the process. The creation and redistribution of dislocations, grain boundaries, and phase boundaries has significant effects on recrystallization and grain growth and, thus, on microstructural evolution. Both Cu-Nb and Zr-Nb exhibit a distinct transition in recrystallization and growth behavior at around 500-nm average layer thicknesses. For the thicker layered materials, the microstructure evolution during recrystallization and growth is determined by the density and distribution of dislocations and HAGBs. For layers less than 500 nm, the layers are largely one-grain thick and the grains are nearly dislocation free; coarsening of grains within layers at the nanoscale is due to reduction in phase boundary energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Raven-Hart, Physical metallurgy principles, 2nd ed. (New York: Van Nostrand, 1972), p. 920.

    Google Scholar 

  2. E.O. Hall, Proc. Phys. Soc. Lond. B 64, 747 (1951).

    Article  Google Scholar 

  3. N.J. Petch, J. Iron Steel Inst. 174, 25 (1953).

    Google Scholar 

  4. R.W. Armstrong, Plasticity: Grain Size Effects.Encyclopedia of materials: science and technology, ed. K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, and P. Veyssiere (Oxford: Elsevier Science Ltd, 2001), p. 7103.

    Chapter  Google Scholar 

  5. R.Z. Valiev and T.G. Langdon, Prog. Mater. Sci. 51, 881 (2006).

    Article  Google Scholar 

  6. R.W. Armstrong, J. Mater. Res. 28, 1792 (2013).

    Article  Google Scholar 

  7. J.R. Weertman, Science 337, 921 (2012).

    Article  Google Scholar 

  8. F.J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena (Oxford: Pergamon Press, 1995).

    Google Scholar 

  9. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mat. Sci. Eng. A Struct. 238, 219 (1997).

    Article  Google Scholar 

  10. R.J. McCabe, I.J. Beyerlein, J.S. Carpenter, and N.A. Mara, Nat. Commun. 5, 052103 (2014).

    Article  Google Scholar 

  11. T. Chookajorn, H.A. Murdoch, and C.A. Schuh, Science 337, 951 (2012).

    Article  Google Scholar 

  12. J.S. Carpenter, S.J. Zheng, R.F. Zhang, S.C. Vogel, I.J. Beyerlein, and N.A. Mara, Philos. Mag. 93, 718 (2013).

    Article  Google Scholar 

  13. I.J. Beyerlein, A. Caro, M.J. Demkowicz, N.A. Mara, A. Misra, and B.P. Uberuaga, Mater. Today 16, 443 (2013).

    Article  Google Scholar 

  14. S. Zheng, J.S. Carpenter, R.J. McCabe, I.J. Beyerlein, and N.A. Mara, Sci. Rep. 4, 6633 (2014).

    Article  Google Scholar 

  15. J.S. Carpenter, R.J. McCabe, S.J. Zheng, T.A. Wynn, N.A. Mara, and I.J. Beyerlein, Metall. Mater. Trans. A 45A, 2192 (2014).

    Article  Google Scholar 

  16. I.J. Beyerlein, J.R. Mayeur, R.J. McCabe, S.J. Zheng, J.S. Carpenter, and N.A. Mara, Acta Mater. 72, 137 (2014).

    Article  Google Scholar 

  17. J.S. Carpenter, T. Nizolek, R.J. McCabe, S.J. Zheng, J.E. Scott, S.C. Vogel, N.A. Mara, T.M. Pollock, and I.J. Beyerlein, Mater. Res. Lett. 3, 50 (2015).

    Article  Google Scholar 

  18. J.S. Carpenter, R.J. McCabe, S.J. Zheng, T.A. Wynn, N.A. Mara, and I.J. Beyerlein, Metall. Mater. Trans. A (2014). doi:10.1007/s11661-013-2162-4.

    Google Scholar 

  19. J.S. Carpenter, S.C. Vogel, J.E. LeDonne, D.L. Hammon, I.J. Beyerlein, and N.A. Mara, Acta Mater. 60, 1576 (2012).

    Article  Google Scholar 

  20. J.S. Carpenter, R.J. McCabe, I.J. Beyerlein, T.A. Wynn, and N.A. Mara, J. Appl. Phys. 113, 094304 (2013).

    Article  Google Scholar 

  21. C.T. Necker, R.D. Doherty, and A.D. Rollett, Textures Microstruct. 14, 635 (1991).

    Article  Google Scholar 

  22. R.D. Doherty, Prog. Mater Sci. 42, 39 (1997).

    Article  Google Scholar 

  23. M.P. Black and R.L. Higginson, Scr. Mater. 41, 125 (1999).

    Article  Google Scholar 

  24. F. Caleyo, T. Baudin, and R. Penelle, Eur. Phys. J Appl. Phys. 20, 77 (2002).

    Article  Google Scholar 

  25. J. Tarasiuk, P. Gerber, and B. Bacroix, Acta Mater. 50, 1467 (2002).

    Article  Google Scholar 

  26. E. Woldt and D.J. Jensen, Metall. Mater. Trans. A 26, 1717 (1995).

    Article  Google Scholar 

  27. D. Dingley, J. Microsc. Oxf. 213, 214 (2004).

    Article  MathSciNet  Google Scholar 

  28. M.H. Alvi, S. Cheong, H. Weiland, and A.D. Rollett, Recrystallization and texture development in hot rolled 1050 aluminum.Recrystallization and grain growth, pts 1 and 2, Vol. 467–470, ed. B. Bacroix, J.H. Driver, R. LeGall, C. Maurice, R. Penelle, H. Regle, and L. Tabourot2004), p. 357.

    Google Scholar 

  29. R.J. McCabe and D.F. Teter, J. Microsc. Oxf. 223, 33 (2006).

    Article  MathSciNet  Google Scholar 

  30. O. Engler and V. Randle, Introduction to texture analysis: macrotexture, microtexture, and orientation 2nd edition, 2nd ed. (Boca Raton: CRC Press/Taylor & Fransis Group, 2010).

    Google Scholar 

  31. I.J. Beyerlein, J. Wang, and R. Zhang, Acta Mater. 61, 7488 (2013).

    Article  Google Scholar 

  32. E. Martinez, A. Caro, and I.J. Beyerlein, Phys. Rev. B 90, 054103 (2014).

    Article  Google Scholar 

  33. J. Wang, R.F. Zhang, C.Z. Zhou, I.J. Beyerlein, and A. Misra, Int. J. Plast. 53, 40 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Los Alamos National Laboratory Directed Research and Development (LDRD) Project 20140348ER. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Neutron diffraction results were collected on the High Pressure Preferred Orientation (HIPPO) beam line at the Los Alamos Neutron Science Center. Electron microscopy was performed at the Los Alamos Electron Microscopy Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney J. McCabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCabe, R.J., Carpenter, J.S., Vogel, S. et al. Recrystallization and Grain Growth in Accumulative Roll-Bonded Metal Composites. JOM 67, 2810–2819 (2015). https://doi.org/10.1007/s11837-015-1663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1663-6

Keywords

Navigation