Skip to main content
Log in

Stability and Thermodynamics Properties of CrFeNiCoMn/Pd High Entropy Alloys from First Principles

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

In this study, we focus on structural and thermodynamics properties, as well as phase stability of quinary CrFeCoNiMn and CrFeCoNiPd high-entropy alloys (HEA) for both equiatomic and non-equiatomic compositions. CrFeCoNiMn (Cantor alloy) is a widely studied fcc alloy, while CrFeCoNiPd is a newly reported fcc alloy, being synthesized by intentionally substituting Mn in Cantor alloy by Pd which has a markedly different atomic size and electronegativity from the other constituent elements and has been achieved the better mechanical properties than Cantor alloy in experiments. DFT-based integrated approaches are conducted on these two quinary systems to calculate the structural, electronic structure and magnetic properties at zero K, as well as the free energies as function of temperature including vibrational, configurational mixing entropy and thermal electronic effects. Various SQS models with about 200 atoms were created to simulate the equiatomic HEA and a special non-equiatomic HEA where a principal element has a rather high concentration while other four kinds of element have equal lower concentrations. Comparison between Mn- and Pd-HEAs in both equiatomic and non-equiatomic compositions shows that the stability of Mn- and Pd-HEAs at zero K and finite temperature are dominated by different mechanisms, this can explain the recent experimental observation that a pronounced spatial fluctuation in atomic fraction is much wider in Pd-HEA rather than in Mn-HEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218.

    Article  Google Scholar 

  2. P.K. Huang, J.W. Yeh, T.T. Shun, and S.K. Chen, Multi-principal-element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating, Adv. Eng. Mater., 2004, 6, p 74–78.

    Article  Google Scholar 

  3. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303.

    Article  Google Scholar 

  4. D.B. Miracle, and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511.

    Article  ADS  Google Scholar 

  5. Y. Ikeda, B. Grabowski, and F. Kormann, Ab Initio Stabilities and Mechanical Properties of Multicomponent Alloys: A Comprehensive Review for High Entropy Alloys and Compositionally Complex Alloys, Mater. Charact., 2019, 147, p 464–511.

    Article  Google Scholar 

  6. M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, High-Entropy Alloys: Fundamentals and Applications. Spinger, New York, 2016.

    Book  Google Scholar 

  7. J. Kitagawa, S. Hamamoto, and N. Ishizu, Cutting Edge of High-Entropy Alloy Superconductors from the Perspective of Materials Research, Metals, 2020, 10, p 1708.

    Google Scholar 

  8. H. Peng, Y. Xie, Z. Xie, Y. Wu, W. Zhu, S. Liang, and L. Wang, Large-Scale and Facile Synthesis of a Porous High-Entropy Alloy CrMnFeCoNi as an Efficient Catalyst, J. Mater. Chem. A, 2020, 8, p 18318–18326.

    Article  Google Scholar 

  9. B. Schuh, F.M. Martin, B. Volker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter, Mechanical Properties Microstructure and Thermal Stability of a Nanocrystalline CoCrFeMnNi High-Entropy Alloy after Severe Plastic Deformation, Acta Mater., 2015, 96, p 258–268.

    Article  ADS  Google Scholar 

  10. E.J. Pickering, R. Munoz-Moreno, H.J. Stone, and N.G. Jones, Precipitation in the Equiatomic High-Entropy Alloy CrMnFeCoNi, Scr. Mater., 2016, 113, p 106–109.

    Article  Google Scholar 

  11. G. Laplanche, A. Kostka, O. Horst, G. Eggeler, and E. George, Microstructure Evolution and Critical Stress for Twinning in the CrMnCoNi High-Entropy Alloy, Acta Mater., 2016, 118, p 152–163.

    Article  ADS  Google Scholar 

  12. F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, and E. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61, p 5743–5755.

    Article  ADS  Google Scholar 

  13. S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, and Z.P. Lu, Stacking Fault Energy of Face-Centered-Cubic High Entropy Alloys, Intermetallics, 2018, 93, p 269–273.

    Article  Google Scholar 

  14. Z. Li, F. Kormann, B. Grabowski, J. Neugebauer, and D. Raabe, Ab Initio Assisted Design of Quinary Dual-Phase High-Entropy Alloys with Transformation-Induced Plasticity, Acta Mater., 2017, 136, p 262–270.

    Article  ADS  Google Scholar 

  15. H. Luo, Z. Li, and D. Raabe, Hydrogen Enhances Strength and Ductility of an Equiatomic High-Entropy Alloy, Sci. Reports, 2017, 7, p 9892.

    ADS  Google Scholar 

  16. Z. Li, Interstitial Equiatomic CoCrFeMnNi High-Entropy Alloys: Carbon Content, Microstructure, and Compositional Homogeneity Effects on Deformation Behavior, Acta Mater., 2019, 164, p 400–412.

    Article  ADS  Google Scholar 

  17. W. Chen, and L. Zhang, High-Throughput Determination of Interdiffusion Coefficients for Co-Cr-Fe-Mn-Ni High-Entropy Alloys, J. Phase Equilib. Diffus., 2017, 38, p 457–465.

    Article  Google Scholar 

  18. V. Verma, A. Tripathi, and K.N. Kulkarni, On Interdiffusion in FeNiCoCrMn High Entropy Alloy, J. Phase Equilib. Diffus., 2017, 38, p 445–456.

    Article  Google Scholar 

  19. Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, and Q. Yu, Tuning Element Distribution, Structure and Properties by Composition in Hing-Entropy Alloys, Nature, 2019, 574, p 223–227.

    Article  ADS  Google Scholar 

  20. B. Yin, and W.A. Curtin, Origin of High Strength in the CoCrFeNiPd High-Entropy Alloy, Mater. Res. Lett., 2020, 8, p 209–215.

    Article  Google Scholar 

  21. N.L. Okamoto, K. Yuge, K. Tanaka, H. Inui, and E.P. George, Atomic Displacement in the CrMnFeCoNi High-Entropy Alloy – A Scaling Factor to Predict Solid Solution Strengthening, AIP Adv., 2016, 6, p 125008.

    Article  ADS  Google Scholar 

  22. A. van de Walle, P. Tiwary, M. De Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, and Z.-K. Liu, Efficient Stochastic Generation of Special Quasirandom Structures, Calphad, 2013, 42, p 13–18.

    Article  Google Scholar 

  23. A. Zunger, S.-H. Wei, L.G. Ferreira, and J.E. Bernard, Special Quasirandom Structures, Phys. Rev. Lett., 1990, 65(3), p 353–356.

    Article  ADS  Google Scholar 

  24. A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving, Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy, JOM, 2013, 65, p 1780–1789.

    Article  ADS  Google Scholar 

  25. M.C. Gao, C. Niu, C. Jiang, and D.L. Irving, Applications of Special Quasi-Random Structures to High-Entropy Alloys Springer, High-Entropy Alloys, 2016, p 333–368

    Google Scholar 

  26. G. Kresse, and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented- Wave Method, Phys. Rev. B, 1999, 59(3), p 1758–1775.

    Article  ADS  Google Scholar 

  27. G. Kresse, and J. Hafner, Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal- Amorphous-Semiconductor Transition in Germanium, Phys. Rev. B, 1994, 49(20), p 14251–14269.

    Article  ADS  Google Scholar 

  28. G. Kresse, and J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors using a Plane-Wave Basis Set, Comput. Mater. Sci., 1996, 6(1), p 15–50.

    Article  Google Scholar 

  29. G. Kresse, and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations using a Plane-Wave Basis Set, Phys. Rev. B, 1996, 54(16), p 11169–11186.

    Article  ADS  Google Scholar 

  30. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77(18), p 3865.

    Article  ADS  Google Scholar 

  31. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple- ERRATA, Phys. Rev. Lett., 1996, 78(7), p 1396.

    Article  ADS  Google Scholar 

  32. H.J. Monkhorst, and J.D. Pack, Special Points for Brillouin-Zone Integrations, Phys. Rev. B, 1976, 13(12), p 5188–5192.

    Article  ADS  MathSciNet  Google Scholar 

  33. A. Otero-de-la-Roza, and V. Luaña, Gibbs2: A New Version of the Quasi-Harmonic Model I Robust Treatment of the Static Data, Comput. Phys. Commun., 2011, 182, p 1708–1720.

    Article  ADS  MATH  Google Scholar 

  34. A. Otero-de-la-Roza, and V. Luaña, Gibbs2: A New Version of the Quasi-Harmonic Model II Implementation and Test Cases, Comput. Phys. Commun., 2011, 182, p 2232–2248.

    Article  ADS  MATH  Google Scholar 

  35. M. Calvo-Dahlborg, J. Cornide, J. Tobola, D. Nguyen-Manh, J.S. Wróbel, J. Juraszek, S. Jouen, and U. Dahlborg, Interplay of Electronic, Structural and Magnetic Properties as the Driving Feature of High-Entropy CoCrFeNiPd Alloys, J. Phys. D: Appl. Phys., 2017, 50, p 185002.

    Article  ADS  Google Scholar 

  36. D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, and D. Raabe, Ab Initio Thermodynamics of the CoCrFeMnNi High Entropy Alloy: Importance of Entropy Contributions beyond the Configurational One, Acta Mat., 2015, 100, p 90–97.

    Article  ADS  Google Scholar 

  37. P. Li, A. Wang, and C.T. Lui, Composition Dependence of Structure, Physical and Mechanical Properties of FeCoNi(MnAl)x High Entropy Alloys, Intermetallics, 2017, 87, p 21–26.

    Article  Google Scholar 

  38. W. Feng, Y. Qi, and S. Wang, Effects of Mn and Al Addition on Structural and Magnetic Properties of FeCoNi-Based High Entropy Alloys, Mater. Res. Express, 2018, 5, p 106511.

    Article  ADS  Google Scholar 

  39. X. Sun, H. Zhang, S. Lu, X. Ding, Y. Wang, and L. Vitos, Phase Selection Rule for Al-Doped CrMnFeCoNi High-Entropy Alloys from First-Principles, Acta Mater., 2017, 140, p 366–374.

    Article  ADS  Google Scholar 

  40. Y. Tong, G. Velisa, S. Zhao, W. Guo, T. Yang, K. Jin, C. Lu, H. Bei, J.Y.P. Ko, D.C. Pagan, Y. Zhang, L. Wang, and F.X. Zhang, Evolution of Local Lattice Distortion under Irradiation in Medium- and High-Entropy Alloys, Materialia, 2018, 2, p 73–81.

    Article  Google Scholar 

  41. Y. Tong, S. Zhao, K. Jin, H. Bei, J.Y.P. Ko, Y. Zhang, and F.X. Zhang, A Comparision Study of Local Lattice Distortion in Ni80Pd20 Binary Alloy and FeCoNiCrPd High-Entropy Alloy, Scripta Mater., 2018, 156, p 14–18.

    Article  Google Scholar 

  42. Z. Wu, M.C. Troparevsky, Y.F. Gao, J.R. Morris, G.M. Stocks, and H. Bei, Phase Stability, Physical Properties and Strengthening Mechanisms of Concentrated Solid Solution Alloys, Curr. Opin. Solid State Mater. Sci., 2017, 21, p 221–237.

    Article  Google Scholar 

  43. M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.G. Ouyang, M. Widom, and J.A. Hawk, Thermodynamics of Concentrated Solid Solution Alloys, Curr. Opin. Solid State Mater. Sci., 2017, 21, p 238–251.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Center for Computational Materials Science of the Institute for Materials Research, Tohoku University, for the support of the supercomputing facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nguyen-Dung Tran or Ying Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Phase Equilibria and Diffusion on the Thermodynamics and Kinetics of High-Entropy Alloys. This issue was organized by Dr. Michael Gao, National Energy Technology Laboratory; Dr. Ursula Kattner, NIST; Prof. Raymundo Arroyave, Texas A&M University; and the late Dr. John Morral, The Ohio State University.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

Fully relaxed SQS structures of quinary Mn-HEAs (left panel) and Pd-HEAs (right panel)

Fig. S2

Radial distribution function of fully relaxed Mn-HEAs (left panel) and Pd-HEAs (right panel)

Fig. S3

Total and d-orbital partial density of state of fully relaxed Mn-HEAs (left panel) and Pd-HEAs (right panel)

Fig. S4

Lattice vibrational and thermal electronic free energy contributions to Gibbs formation free energy of fully relaxed fcc Mn-HEAs

Fig. S5

Lattice vibrational and thermal electronic free energy contributions to Gibbs formation free energy of fully relaxed fcc Pd-HEAs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, ND., Saengdeejing, A., Suzuki, K. et al. Stability and Thermodynamics Properties of CrFeNiCoMn/Pd High Entropy Alloys from First Principles. J. Phase Equilib. Diffus. 42, 606–616 (2021). https://doi.org/10.1007/s11669-021-00900-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00900-1

Keywords

Navigation