Skip to main content
Log in

Radiation Effects in GaN-Based High Electron Mobility Transistors

  • Published:
JOM Aims and scope Submit manuscript

Abstract

GaN-based devices are more radiation hard than their Si and GaAs counterparts due to the high bond strength in III-nitride materials. In this paper, we review data on the radiation resistance of GaN-based transistors such as AlGaN/GaN and InAlN/GaN high electron mobility transistors (HEMTs) to different types of ionizing radiation. The primary energy levels introduced by different forms of radiation, carrier removal rates and role of existing defects are discussed. The carrier removal rates are a function of initial carrier concentration, dose and dose rate but not of hydrogen concentration in the nitride material grown by metal organic chemical vapor deposition. Proton and electron irradiation damage in HEMTs creates positive threshold voltage shifts due to a decrease in the two-dimensional electron gas concentration resulting from electron trapping at defect sites, as well as a decrease in carrier mobility and degradation of drain current and transconductance. Neutron irradiation created more extended damage regions and at high doses leads to Fermi level pinning, while 60Co γ-ray irradiation leads to much smaller changes in HEMT drain current relative to the other forms of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.C. Look, D.C. Reynolds, J.W. Hemsky, J.R. Sizelove, R.L. Jones, and R.J. Molnar, Phys. Rev. Lett. 79, 2273 (1997).

    Article  Google Scholar 

  2. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, N.G. Kolin, D.I. Merkurisov, V.M. Boiko, A.V. Korulin, and S.J. Pearton, J. Vac. Sci. Technol. B 28, 608 (2010).

    Article  Google Scholar 

  3. B.D. White, M. Bataiev, S.H. Gross, X. Hu, A. Karmarkar, D.M. Fleetwood, R.D. Schrimpf, W.J. Schaff, and L.J. Brillson, IEEE Trans. Nucl. Sci. 50, 1934 (2003).

    Article  Google Scholar 

  4. A.P. Karmarkar, B. Jun, D.M. Fleetwood, D.D. Schrimpf, R.A. Weller, B.D. White, L.S. Brillson, and U.K. Mishra, IEEE Trans. Nucl. Sci. 51, 3801 (2004).

    Article  Google Scholar 

  5. X. Hu, A. Karmarkar, J. Bongim, D.M. Fleetwood, R.D. Schrimpf, R.D. Geil, R.A. Weller, B.D. White, M. Bataiev, L.J. Brillson, and U.K. Mishra, IEEE Trans. Nucl. Sci. 50, 1791 (2003).

    Article  Google Scholar 

  6. B. Luo, J.W. Johnson, F. Ren, K.K. Alums, C.R. Abernathy, S.J. Pearton, A.M. Dabiran, A.M. Wowchak, C.J. Polley, P.P. Chow, D. Shoenfeld, and A.G. Baca, Appl. Phys. Lett. 80, 604 (2002).

    Article  Google Scholar 

  7. B. Luo, J. Kim, F. Ren, J.K. Gillespie, R.C. Fitch, J. Sewell, R. Dettmer, G.D. Via, A. Crespo, T.J. Jenkins, B.P. Gila, A.H. Onstine, K.K. Allums, C.R. Abernathy, S.J. Pearton, R. Dwidevi, T.N. Fogarty, and R. Wilkins, Appl. Phys. Lett. 82, 1428 (2003).

    Article  Google Scholar 

  8. J. Grant, R. Bates, W. Cunningham, A. Blue, J. Melone, F. McEwan, J. Vaitkus, E. Gaubas, and V. O’Shea, Nucl. Instrum Method A 576, 60 (2007).

    Article  Google Scholar 

  9. Y.S. Puzyrev, T. Roy, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, and S.T. Pantelides, IEEE Trans. Nucl. Sci. 58, 2918 (2011).

    Article  Google Scholar 

  10. C.F. Lo, L. Liu, T.S. Kang, F. Ren, C. Schwarz, E. Flitsiyan, L. Chernyak, H.Y. Kim, J. Kim, S.P. Yun, O. Laboutin, Y. Cao, J.W. Johnson, and S.J. Pearton, J. Vac. Sci. Technol. B 30, 031202 (2012).

    Article  Google Scholar 

  11. A.Y. Polyakov, S.J. Pearton, P. Frenzer, F. Ren, L. Liu, and J. Kim, J. Mater. Chem. C 1, 877 (2013).

    Article  Google Scholar 

  12. S.J. Pearton, R. Deist, F. Ren, L. Liu, A.Y. Polyakov, and J. Kim, J. Vac. Sci. Technol. A 31, 050801 (2013).

    Article  Google Scholar 

  13. Z. Zhang, A.R. Arehart, E. Cinkilic, J. Chen, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, B. McSkimming, J.S. Speck, and S.A. Ringel, Appl. Phys. Lett. 103, 042102 (2013).

    Article  Google Scholar 

  14. Y. Berthlet, B. Guhel, H. Boudart, J.L. Gualous, M. Trolet, M. Piccione and C. Gaquiere, Electron. Lett. 48 (2012).

  15. M.R. Hogsed, Y.K. Yeo, M. Ahoujja, M.-Y. Ryu, J.C. Petrosky, and R.L. Hengehold, Appl. Phys. Lett. 86, 261906 (2005).

    Article  Google Scholar 

  16. S.A. Vitusevich, N. Klein, A.E. Belyaev, S.V. Danylyuk, M.V. Petrychuk, R.V. Konakova, A.M. Kurakin, A.E. Rengevich, AYu Avksentyev, B.A. Danilchenko, V. Tilak, J. Smart, A. Vertiatchikh, and L.F. Eastman, Phys. Stat. Solidi A 195, 101 (2003).

    Article  Google Scholar 

  17. A.M. Kurakin, S.A. Vitusevich, S.V. Danylyuk, H. Hardtdegen, N. Klein, Z. Bougrioua, B.A. Danilchenko, R.V. Danilchenko, R.V. Konakova, and A.E. Belyaev, J. Appl. Phys. 103, 083707 (2008).

    Article  Google Scholar 

  18. K.H. Chow, L. Vlasenko, P. Johannesen, C. Bozdog, G. Watkins, A. Usui, H. Sunakawa, C. Sasaoka, and M. Mizuta, Phys. Rev. B 69, 045207 (2004).

    Article  Google Scholar 

  19. K. Saarinen, T. Suski, I. Grzegory, and D.C. Look, Phys. Rev. B 64, 233201 (2001).

    Article  Google Scholar 

  20. H.Y. Xiao, F. Gao, X.T. Zu, and J. Weber, J. Appl. Phys. 105, 123527 (2009).

    Article  Google Scholar 

  21. D.C. Look, G.C. Farlow, P.J. Drevinsky, D.F. Bliss, and J.R. Sizelove, Appl. Phys. Lett. 83, 3525 (2003).

    Article  Google Scholar 

  22. H.J. von Bardeleben, J.L. Cantin, U. Gerstmann, A. Scholle, S. Greulich-Weber, E. Rauls, M. Landmann, W.G. Schmidt, A. Gentils, J. Botsoa, and M.F. Barthe, Phys. Rev. Lett. 109, 206402 (2012).

    Article  Google Scholar 

  23. A. Sasikumar, A.R. Arehart, S. Martin-Horcajo, M.F. Romero, Y. Pei, D. Brown, F. Recht, M.A. di Forte-Poisson, F. Calle, M.J. Tadjer, S. Keller, S.P. DenBaars, U.K. Mishra, and S.A. Ringel, Appl. Phys. Lett. 103, 0335091 (2013).

    Article  Google Scholar 

  24. T.J. Anderson, A.D. Koehler, J.D. Greenlee, B.D. Weaver, M.A. Mastro, J.K. Hite, C.R. Eddy, F.J. Kub, and K.D. Hobart, IEEE Electron Device Lett. 35, 826 (2014).

    Article  Google Scholar 

  25. A.D. Koehler, T.J. Anderson, J.K. Hite, B.D. Weaver, M.J. Tadjer, J.D. Greenlee, P. Specht, M. Porter, T.R. Weatherford, K.D. Hobart, and F.J. Kub, Investigation of Proton-Irradiated AlGaN/GaN HEMTs on Sapphire, Si, and SiC Substrates 56th Electronic Materials Conference (Santa Barbara, CA, June 25–27, 2014).

  26. A. Sasikumar, A. R. Arehart, S. W. Kaun, J. Chen, E. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, J. S. Speck and S. A. Ringel, Proc. SPIE 8986, Gallium Nitride Materials and Devices IX 89861C, 1 (2014).

  27. D.C. Look, Z.Q. Fang, and B. Claflin, J. Cryst. Growth 281, 143 (2005).

    Article  Google Scholar 

  28. C.G. van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).

    Article  Google Scholar 

  29. M.A. Reschikov and H. Morkoc, J. Appl. Phys. 97, 061301 (2005).

    Article  Google Scholar 

  30. K.H. Chow, G.D. Watkins, A. Usui, and M. Mizuta, Phys. Rev. Lett. 85, 2761 (2000).

    Article  Google Scholar 

  31. B.S. Kang, S. Kim, F. Ren, J.W. Johnson, R. Therrien, P. Rajagopal, J. Roberts, E. Piner, K.J. Linthicum, S.N.G. Chu, K. Baik, B.P. Gila, C.R. Abernathy, and S.J. Pearton, Appl. Phys. Lett. 85, 2962 (2004).

    Article  Google Scholar 

  32. R. Mehandru, B. Luo, J. Kim, F. Ren, B. Gila, A.H. Onstine, C.R. Abernathy, S.J. Pearton, D. Gotthold, R. Birkhahn, B. Peres, R. Fitch, J. Gillespie, T. Jenkins, J. Sewell, D. Via, and A. Crespo, Appl. Phys. Lett. 82, 2530 (2003).

    Article  Google Scholar 

  33. Y.-S. Hwang, L. Liu, F. Ren, A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, N.G. Kolin, V.M. Boiko, S.S. Vereyovkin, V. Ermakov, C.F. Lo, O.A. Laboutin, Yu Cao, J.W. Johnson, N.I. Kargin, R.V. Ryzhuk, and S.J. Pearton, J. Vac. Sci. Technol. B 31, 022206 (2013).

    Article  Google Scholar 

  34. Y.-H. Hwang, S. Li, Y.-L. Hsieh, F. Ren, S.J. Pearton, E. Patrick, M.E. Law, and D.J. Smith, Appl. Phys. Lett. 104, 082106 (2014).

    Article  Google Scholar 

  35. B.D. Weaver, P.A. Martin, J.B. Boos, and C.D. Cress, IEEE Trans. Nucl. Sci. 59, 3077 (2012).

    Article  Google Scholar 

  36. T. Roy, E.X. Zhang, Y.S. Puzyrev, D.M. Fleetwood, R.D. Schrimpf, B.K. Choi, A.B. Hmelo, and S.T. Pantelides, IEEE Trans. Nucl. Sci. 57, 3060 (2010).

    Google Scholar 

  37. L. Selvaraj, T. Suzue, and T. Egawa, IEEE Electron Device Lett. 30, 587 (2009).

    Article  Google Scholar 

  38. L. Bin and T. Palacios, IEEE Electron Device Lett. 31, 9 (2010).

    Google Scholar 

  39. M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, IEEE Electron Device Lett. 31, 189 (2010).

    Article  Google Scholar 

  40. H.-Y. Liu, B.-Y. Chou, W.-C. Hsu, C.-S. Lee, J.-K. Sheu, and C.-S. Ho, IEEE Trans. Electron Device 60, 213 (2013).

    Article  Google Scholar 

  41. P.D. Ye, B. Yang, K. Ng, J. Bude, G. Wilk, S. Halder, and J. Hwang, Appl. Phys. Lett. 86, 063501 (2005).

    Article  Google Scholar 

  42. A.Y. Polyakov, N. Smirnov, A. Govorkov, E. Kozhukhova, S.J. Pearton, F. Ren, L. Liu, J.W. Johnson, W. Lim, N. Kolin, S. Veryokin, and V.S. Ermakov, J. Vac. Sci. Technol. B 30, 061207 (2012).

    Article  Google Scholar 

  43. S. Mukherjee, J. Chen, T. Roy, M. Silvestri, R.D. Schrimpf, D.M. Fleetwood, J. Singh, J.M. Hinckley, A. Paccagnella, and S.T. Pantelides, IEEE Trans. Nucl. Sci. 61, 1316 (2014).

    Article  Google Scholar 

  44. J. Chen, Y.S. Puzyrev, C.X. Zhang, E.X. Zhang, M.W. McCurdy, D.M. Fleetwood, R.D. Schrimpf, S.T. Pantelides, S.W. Kaun, E.C. Kyle, and J.S. Speck, IEEE Trans. Nucl. Sci. 60, 4080 (2013).

    Article  Google Scholar 

  45. T.P. Ma and P.V. Dressdorfer, eds., Ionizing Radiation in MOS Devices/Circuits (New York: Wiley, 1989).

    Google Scholar 

  46. F.B. McLean, IEEE Trans. Nucl. Sci. 29, 1651 (1980).

    Article  Google Scholar 

  47. G.P. Summers, E.A. Burke, P. Shapiro, S.R. Messenger, and R.J. Waters, IEEE Trans. Nucl. Sci. 40, 1372 (1993).

    Article  Google Scholar 

  48. B.R. Tuttle, 2010 IEEE Nuclear and Space Radiation Effects Conference, Denver, CO (July 2010).

  49. C.F. Lo, C.Y. Chang, B.H. Chu, H.-Y. Ki, J. Kim, D.A. Cullen, L. Zhou, D.J. Smith, I.I. Kravchenko, S.J. Pearton, A. Dabiran, B. Cui, P.P. Chow, S. Jang, and F. Ren, J. Vac. Sci. Technol. B 28, L47 (2010).

    Article  Google Scholar 

  50. K.K. Allums, M. Hlad, A.P. Gerger, B.P. Gila, C.R. Abernathy, S.J. Pearton, F. Ren, R. Dwivedi, T.N. Fogarty, and R. Wilkins, J. Electron. Mater. 36, 519 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by an U.S. DOD HDTRA Grant No. 1-11-1-0020, monitored by Dr. James Reed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Pearton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pearton, S.J., Hwang, YS. & Ren, F. Radiation Effects in GaN-Based High Electron Mobility Transistors. JOM 67, 1601–1611 (2015). https://doi.org/10.1007/s11837-015-1359-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1359-y

Keywords

Navigation