Skip to main content
Log in

Hydroxide Concentration Dependence of Magnetic Behavior at Low Temperature in MnFe2O4 Nanoparticles

  • Published:
JOM Aims and scope Submit manuscript

Abstract

MnFe2O4 nanoparticles of various particle sizes were prepared by co-precipitation, in which different hydroxide concentrations were employed to control particle growth. X-ray diffraction and scanning electron microscopy were used to investigate the nanoparticle structure and morphology (shape and size). The particle size increased with increasing hydroxide concentration. The magnetization and coercivity field were measured by vibrating sample magnetometry. Changes in magnetic behavior were observed in the magnetic hysteresis loop curves of nanoparticles with increasing hydroxide concentration. In the absence of hydroxide, nanoparticles exhibited paramagnetic behavior. Increasing the hydroxide concentration caused a gradual conversion to ferrimagnetic behavior. An increased Néel temperature was observed with increasing hydroxide concentration, and the saturation magnetization exhibited a sharp decrease. Nonuniform hysteresis was observed in the magnetization curve for the sample prepared from hydroxide and ammonium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.L. Hylton, M.A. Parker, M. Ullah, K.R. Coffey, R. Umphress, and J.K. Howard, J. Appl. Phys. 75, 5960 (1994).

    Article  Google Scholar 

  2. X. Sui and M.H. Kryder, Appl. Phys. Lett. 63, 1582 (1993).

    Article  Google Scholar 

  3. A. Morisako, X. Liu, and M. Matsumoto, J. Appl. Phys. 81, 4374 (1997).

    Article  Google Scholar 

  4. R. Weissleder, A. Bogdanov, E.A. Neuwelt, and M. Papisov, Adv. Drug Delivery Rev. 16, 321 (1995).

    Article  Google Scholar 

  5. P. Reimer and R. Weissleder, Radiology 36, 153 (1996).

    Article  Google Scholar 

  6. C. Chouly, D. Pouliquen, L. Lucet, J.J. Jeune, and P. Jallet, J. Micro. 13, 245 (1996).

    Google Scholar 

  7. P.K. Gupta and C.T. Hung, Life Sci. 44, 175 (1989).

    Article  Google Scholar 

  8. M. Yokoyama, T. Sato, and E. Ohta, J. Appl. Phys. 80, 1015 (1996).

    Article  Google Scholar 

  9. J. Shi, S. Glder, K. Babcock, and D.D. Awschalom, Science 271, 937 (1996).

    Article  Google Scholar 

  10. A. Navrotsky, L. Mazeina, and J. Majzlan, Science 319, 1635 (2008).

    Article  Google Scholar 

  11. A. Goldman, Modern Ferrite Technology, 2nd ed. (New York: Springer, 2006), pp. 64–70.

    Google Scholar 

  12. A. Yang, C.N. Chinnasamy, J.M. Greneche, Y. Chen, S.D. Yoon, Z. Chen, K. Hsu, Z. Cai, K. Ziemer, C. Vittoria, and V.G. Harris, Nanotechnology 20, 185704 (2009).

    Article  Google Scholar 

  13. C.N. Chinnasamy, A. Yang, S.D. Yoon, K. Hsu, M.D. Shultz, E.E. Carpenter, S. Mukerjee, C. Vittoria, and V.G. Harris, J. Appl. Phys. 101, 09M509 (2007).

    Google Scholar 

  14. Z.J. Zhang, Z.L. Wang, B.C. Chakoumakos, and J.S. Yin, J. Am. Chem. Soc. 120, 1800 (1998).

    Article  Google Scholar 

  15. J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, E. Devlin, and A. Kostikas, J. Phys. Rev. B 54, 9288 (1996).

    Article  Google Scholar 

  16. S. Sun, H. Zeng, D.B. Robinson, S. Ramoux, P.M. Rice, S.X. Wang, and G. Li, J. Am. Chem. Soc. 1246, 273 (2004).

    Article  Google Scholar 

  17. Q. Song and Z.J. Zhang, J. Am. Chem. Soc. 126, 6164 (2004).

    Article  Google Scholar 

  18. B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials, 2nd ed. (New York: Wiley, 2008), pp. 167–177.

    Book  Google Scholar 

  19. R. Aquino, F.A. Tourinho, R. Itri, M.C.F.L. Lara, and J. Depeyro, J. Magn. Magn. Mater. 252, 23 (2002).

    Article  Google Scholar 

  20. T. Sato, T. Iijima, M. Seki, and N. Inagaki, J. Magn. Magn. Mater. 65, 252 (1987).

    Article  Google Scholar 

  21. M. George, S.S. Nair, A.M. John, P.A. Joy, and M.R. Anantharaman, J. Phys. D Appl. Phys. 39, 900 (2006).

    Article  Google Scholar 

  22. M. Vaez-zadeh and A. Mohammadi, J. Appl. Phys. A 115, 341 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate Professor Arthur Yelon and Professor David Menard for their support and we thank the Magnetic Laboratory of École Polytechnique de Montreal, Department of Physics Engineering, Montréal, Canada, in which we carried out our magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Vaez-Zadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaez-Zadeh, M., Mohammadi, A. Hydroxide Concentration Dependence of Magnetic Behavior at Low Temperature in MnFe2O4 Nanoparticles. JOM 66, 1345–1348 (2014). https://doi.org/10.1007/s11837-014-1024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1024-x

Keywords

Navigation