Skip to main content
Log in

Novel behavior in the MH and field cooled (FC) curves of the MnFe2O4 nanoparticles synthesized by the coprecipitation method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

MnFe2O4 nanoparticles were prepared by a coprecipitation chemical method. The average size of the obtained nanoparticles was about 30 nm. The hysteresis measured at T=300 K clearly shows ferromagnetic order at room temperature while that measured at T=450 K shows superparamagnetic behavior. The difference in the magnetization curves in the field increasing cycle and field decreasing cycle at higher temperatures (450 K or higher) is very unusual. In this case, a hysteresis in magnetization in higher magnetic fields with an opening up of the magnetization curve was observed. In this work, the effect of temperature and time of application of the applied field on the magnetization behavior was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.S. Moodera, T.S. Santos, T. Nagahama, J. Phys. Condens. Matter 19, 165202 (2007)

    Article  ADS  Google Scholar 

  2. D.H. Han, H.L. Luo, Z. Yang, J. Magn. Magn. Mater. 161, 376 (1996)

    Article  ADS  Google Scholar 

  3. I. Anton, J. Magn. Magn. Mater. 85, 219 (1990)

    Article  ADS  Google Scholar 

  4. C.H. Cunningham, T. Arai, P.C. Yang, M.V. McConnell, J.M. Pauly, S.M. Connolly, Magn. Reson. Med. 53, 99 (2005)

    Google Scholar 

  5. I. Hilger, K. Fruhauf, W. Abdra, R. Hiergeist, R. Hergt, W.A. Kaiser, Heating potential of iron oxides for therapeutic purposes in interventional radiology. Acad. Radiol. 9, 198–202 (2002)

    Article  Google Scholar 

  6. J. Dobson, Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55–60 (2006)

    Article  Google Scholar 

  7. K. Haneda, A.H. Morrish, J. Appl. Phys. 63, 4258 (1988)

    Article  ADS  Google Scholar 

  8. C.N. Chinnasamy, A. Narayanasami, N. Ponpandian, K. Chattopadhyay, H. Guerault, J.-M. Greneche, J. Phys. Condens. Matter 12, 7795 (2000)

    Article  ADS  Google Scholar 

  9. C.N. Chinnasamy, A. Narayanasamy, N. Popandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi, I. Nakatani, Phys. Rev. B 63, 184108 (2001)

    Article  ADS  Google Scholar 

  10. R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, J. Appl. Phys. 81, 5552 (1997)

    Article  ADS  Google Scholar 

  11. R.H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999)

    Article  ADS  Google Scholar 

  12. C. Rath, N.C. Mishra, S. Anand, R.P. Das, K.K. Sahu, Appl. Phys. Lett. 76, 475 (2000)

    Article  ADS  Google Scholar 

  13. A. Fairweather, F.F. Roberts, A.J.E. Welch, Rep. Prog. Phys. 15, 142 (1952)

    Article  ADS  Google Scholar 

  14. D.S. McClure, J. Phys. Chem. Solids 3, 311 (1957)

    Article  ADS  Google Scholar 

  15. T. Sato, T. Iijima, M. Seki, N. Inagaki, Magnetic properties of ultrafineferrite particles. J. Magn. Magn. Mater. 65, 252–256 (1987)

    Article  ADS  Google Scholar 

  16. M. George, S.S. Nair, A.M. John, P.A. Joy, M.R. Anantharaman, J. Phys. D, Appl. Phys. 39, 900 (2006)

    Article  ADS  Google Scholar 

  17. J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, E. Devlin, A. Kostikas, Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. J. Phys Rev B 54 (1996)

  18. Q. Gao, G. Hang, J. Ni, W. Wang, J. Tang, J. He, Uniaxial anisotropy and novel magnetic behavior of CoFe2O4 nanoparticles prepared in a magnetic field. J. Appl. Phys. 105, 07A516 (2009)

    Google Scholar 

  19. Z.J. Zhang, Z.L. Wang, B.C. Chakoumakos, J.S. Yin, Temperature dependence of cation distribution and oxidation state in magnetic Mn–Fe ferrite nanocrystals. J. Am. Chem. Soc. 120, 1800–1804 (1998)

    Article  Google Scholar 

  20. A. Yang, C.N. Chinnasamy, J.M. Greneche, Y. Chen, S.D. Yoon, Z. Chen, K. Hsu, Z. Cai, K. Ziemer, C. Vittoriaand, V.G. Harris, Enhanced Neel temperature in Mn ferritenanoparticles linked to growth-rate-induced cation inversion. Nanotechnology 20, 185704 (2009). 9 p.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors appreciate Professor Arthur Yelon for his valuable comments and kind guidance. Also, we appreciate Professor David Menard for his support and we thank the Magnetic Laboratory of “Ecole Polytechnique de Montréal,” Department of Physics Engineering, Montreal, Canada, in which we carried out our magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Vaez-zadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaez-zadeh, M., Mohammadi, A. Novel behavior in the MH and field cooled (FC) curves of the MnFe2O4 nanoparticles synthesized by the coprecipitation method. Appl. Phys. A 115, 341–345 (2014). https://doi.org/10.1007/s00339-013-7827-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7827-8

Keywords

Navigation