Skip to main content
Log in

Trends in Grain Boundary Mobility: Survey of Motion Mechanisms

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Grain boundary (GB) motion in polycrystalline materials is expected and observed to be dominated by thermally activated processes. This has important implications for properties influenced by the presence of GBs. Here, the GB motions of a catalog of 388 simulated nickel boundaries reveal a rich set of behaviors, which demonstrate that the temperature dependencies of GB mobility are far more complex than originally believed. In the set of 388 boundaries, four different general classes were observed with the following percentages: (I) ~57% exhibited traditional thermally activated mobility; (II) ~20% exhibited non-thermally activated mobility, where mobility was either independent of temperature or mobility decreased with increasing temperature (i.e., not thermally activated); (III) ~14% exhibited mixed modes of mobility, where different trends were exhibited over different temperature regimes (e.g., thermally activated at low temperature and non-thermally activated at high temperature); and (IV) ~9% exhibited unclassifiable mobility trends or were immobile over the studied temperature range. Thus, although the studied set of boundaries is not statistically representative of all GBs, it indicates that we must expand our preconceived notions to include new and interesting phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.O. Hall, Proc. Phys. Soc. B 64, 747 (1951).

    Article  Google Scholar 

  2. N.J. Petch, J. Iron Steel Inst. 174, 25 (1953).

    Google Scholar 

  3. N. Hansen, Scripta Mater. 51, 801 (2004).

    Article  Google Scholar 

  4. A. Chiba, S. Hanada, S. Watanabe, and T.O. Abe, Acta Metall. Mater. 42, 1733 (1994).

    Article  Google Scholar 

  5. T.H. Fang, W.L. Li, N.R. Tao, and K. Lu, Science 331, 1587 (2011).

    Article  Google Scholar 

  6. M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, and I. Karibe, Acta Mater. 50, 2331 (2002).

    Article  Google Scholar 

  7. L. Lu, Science 304, 422 (2004).

    Article  Google Scholar 

  8. A. Bagri, S.-P. Kim, R.S. Ruoff, and V.B. Shenoy, Nano Lett. 11, 3917 (2011).

    Article  Google Scholar 

  9. M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  10. A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials (Oxford: Clarendon Press, 1995).

    Google Scholar 

  11. G. Gottstein and L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd ed. (Boca Raton, FL: CRC Press, 2009).

    Book  Google Scholar 

  12. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Oxford: Elsevier, 2004).

    Google Scholar 

  13. G. Gottstein, D.A. Molodov, and L.S. Shvindlerman, Interface Sci. 6, 7 (1998).

    Article  Google Scholar 

  14. J.W. Cahn, Y. Mishin, and A. Suzuki, Acta Mater. 54, 4953 (2006).

    Article  Google Scholar 

  15. M.I. Mendelev, D. Srolovitz, L.S. Shvindlerman, and G. Gottstein, J. Mater. Res. 17, 234 (2002).

    Article  Google Scholar 

  16. D. Olmsted, E. Holm, and S. Foiles, Acta Mater. 57, 3704 (2009).

    Article  Google Scholar 

  17. E.A. Holm and S.M. Foiles, Science 328, 1138 (2010).

    Article  Google Scholar 

  18. D.L. Olmsted, S.M. Foiles, and E.A. Holm, Scripta Mater. 57, 1161 (2007).

    Article  Google Scholar 

  19. S.M. Foiles and J.J. Hoyt, Acta Mater. 54, 3351 (2006).

    Article  Google Scholar 

  20. D. Olmsted, S.M. Foiles, and E.A. Holm, Acta Mater. 57, 3694 (2009).

    Article  Google Scholar 

  21. K.G.F. Janssens, D. Olmsted, E.A. Holm, S.M. Foiles, S.J. Plimpton, and P.M. Derlet, Nat. Mater. 5, 124 (2006).

    Article  Google Scholar 

  22. M.I. Mendelev, C. Deng, C.A. Schuh, and D.J. Srolovitz, Model. Simul. Mater. Sci. Eng. 21, 045017 (2013).

    Article  Google Scholar 

  23. E.L. Maksimova, L.S. Shvindlerman, and B.B. Straumal, Acta Metall. 36, 1573 (1988).

    Article  Google Scholar 

  24. C. Deng and C.A. Schuh, Phys. Rev. Lett. 106, 045503 (2011).

    Article  Google Scholar 

  25. V. Randle, G.S. Rohrer, H.M. Miller, M. Coleman, and G.T. Owen, Acta Mater. 56, 2363 (2008).

    Article  Google Scholar 

  26. D.M. Saylor, B.S. El Dasher, A.D. Rollett, and G.S. Rohrer, Acta Mater. 52, 3649 (2004).

    Article  Google Scholar 

  27. V. Randle, Mater. Sci. Technol. 26, 253 (2010).

    Article  Google Scholar 

  28. C.V. Kopetskii, V.G. Sursaeva, and L.S. Shvindlerman, Scripta Metall. 12, 953 (1978).

    Article  Google Scholar 

  29. Z. Kai, J.R. Weertman, and J.A. Eastman, Appl. Phys. Lett. 87, 061921 (2005).

    Article  Google Scholar 

  30. C. Lingk and M.E. Gross, J. Appl. Phys. 84, 5547 (1998).

    Article  Google Scholar 

  31. T.J. Rupert, D.S. Gianola, Y. Gan, and K.J. Hemker, Science 326, 1686 (2009).

    Article  Google Scholar 

  32. J.G. Brons, H.A. Padilla I., G.B. Thompson, and B.L. Boyce, Scripta Mater. 68, 781 (2013).

Download references

Acknowledgements

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. We acknowledge support from the U. S. Department of Energy, Office of Basic Energy Sciences through the core research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric R. Homer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homer, E.R., Holm, E.A., Foiles, S.M. et al. Trends in Grain Boundary Mobility: Survey of Motion Mechanisms. JOM 66, 114–120 (2014). https://doi.org/10.1007/s11837-013-0801-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0801-2

Keywords

Navigation