Skip to main content
Log in

Oxygen Atom Adsorption on and Diffusion into Nb(110) and Nb(100) from First Principles

  • Published:
JOM Aims and scope Submit manuscript

Abstract

To understand the dynamics of oxidation of Nb, we examine the adsorption, absorption, and diffusion of an oxygen atom on, in, and into Nb(110) and Nb(100) surfaces, respectively, using density functional theory. Our calculations predict that the oxygen atom adsorbs on the threefold site on Nb(110) and the fourfold hollow site on Nb(100), and the adsorption energy is −5.08 eV and −5.18 eV, respectively. We find the long and short bridge sites to be transition states for O diffusion on Nb(110), while the on-top site is a rank-2 saddle point. In the subsurface region, the oxygen atom prefers the octahedral site, as in bulk niobium. Our results show also that the O atom is more stable on Nb(110) subsurface than on Nb(100) subsurface. The diffusion of oxygen atoms into niobium surfaces passes through transition states where the oxygen atom is coordinated to four niobium atoms. The diffusion barriers of the oxygen atom into Nb(110) and Nb(100) are 1.81 eV and 2.05 eV, respectively. An analysis of the electronic density of states reveals the emergence of well-localized electronic states below the lowest states of clean Nb surfaces due to dp orbital hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I.E. Wachs, L.E. Briand, J.-M. Jehng, L. Burcham, and X. Gao, Catal. Today 57, 323 (2000).

    Article  Google Scholar 

  2. M. Grundner and J. Halbritter, J. Appl. Phys. 51, 397 (1980).

    Article  Google Scholar 

  3. J.-I. Shirakashi, K. Matsumoto, N. Miura, and M. Konagai, J. Appl. Phys. 83, 5567 (1998).

    Article  Google Scholar 

  4. B.P. Bewlay, M.R. Jackson, J.C. Zhao, and P.R. Subramanian, Metall. Mater. Trans. A 34A, 2043 (2003).

    Article  Google Scholar 

  5. R. Pantel, M. Bujor, and J. Bardolle, Surf. Sci. 62, 589 (1977).

    Article  Google Scholar 

  6. S. Usami, N. Tominaga, and T. Nakajima, Vacuum 27, 11 (1977).

    Article  Google Scholar 

  7. H.H. Farrell and M. Strongin, Surf. Sci. 38, 18 (1973).

    Article  Google Scholar 

  8. W.-S. Lo, H.-H. Chen, T.-S. Chien, C.-C. Tsan, and B.-S. Fang, Surf. Rev. Lett. 4, 651 (1997).

    Article  Google Scholar 

  9. B. An, S. Fukuyama, K. Yokogawa, and M. Yoshimura, Phys. Rev. B 68, 115423 (2003).

    Article  Google Scholar 

  10. R. Franchy, T.U. Bartke, and P. Gassmann, Surf. Sci. 366, 60 (1996).

    Article  Google Scholar 

  11. C. Sürgers, M. Schöck, and H. von Löhneysen, Surf. Sci. 471, 209 (2001).

    Article  Google Scholar 

  12. I. Arfaoui, J. Cousty, and H. Safa, Phys. Rev. B 65, 115413 (2002).

    Article  Google Scholar 

  13. M. Wen, B. An, S. Fukuyama, and K. Yokogawa, Surf. Sci. 603, 216 (2009).

    Article  Google Scholar 

  14. J.R. Sambrano, J. Andrés, A. Beltrán, F. Sensato, and E. Longo, Chem. Phys. Lett. 287, 620 (1998).

    Article  Google Scholar 

  15. A. Fielicke, G. Meijer, and G. von Helden, J. Am. Chem. Soc. 125, 3659 (2003).

    Article  Google Scholar 

  16. D.A. Kilimis and C.E. Lekka, Mater. Sci. Eng. B 144, 27 (2007).

    Article  Google Scholar 

  17. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  18. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  19. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  20. M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989).

    Article  Google Scholar 

  21. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  MathSciNet  Google Scholar 

  22. R. Roberge, J. Less Common Met. 40, 161 (1975).

    Article  Google Scholar 

  23. C. Kittel, Introduction to Solid State Physics, 7th ed. (New York: Wiley, 1996).

    Google Scholar 

  24. M.R. Fellinger, H. Park, and J.W. Wilkins, Phys. Rev. B 81, 144119 (2010).

    Article  Google Scholar 

  25. D. Nguyen-Manh, A.P. Horsfield, and S.L. Dudarev, Phys. Rev. B 73, 020101 (2006).

    Article  Google Scholar 

  26. J. Neugebauer and M. Scheffler, Phys. Rev. B 46, 16067 (1992).

    Article  Google Scholar 

  27. G. Henkelman, B.P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).

    Article  Google Scholar 

  28. K.E. Yoon, D.N. Seidman, C. Antoine, and P. Bauer, Appl. Phys. Lett. 93, 132502 (2008).

    Article  Google Scholar 

  29. C.E. Lekka, M.J. Mehl, N. Bernstein, and D.A. Papaconstantopoulos, Phys. Rev. B 68, 035422 (2003).

    Article  Google Scholar 

  30. X. Pan, M.W. Ruckman, and M. Strongin, Phys. Rev. B 35, 3734 (1987).

    Article  Google Scholar 

  31. J.K. Burdett and T. Hughbanks, J. Am. Chem. Soc. 106, 3101 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

This technical effort was performed in support of the National Energy Technology Laboratory’s (NETL) ongoing research on Turbines Materials Development for Oxy-combustion Environments under the RES Contract DE-FE-0004000. This work used the computing facility at the Texas Advanced Computing Center (TACC) through Award# DMR120048 by the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. “This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De Nyago Tafen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tafen, D.N., Gao, M.C. Oxygen Atom Adsorption on and Diffusion into Nb(110) and Nb(100) from First Principles. JOM 65, 1473–1481 (2013). https://doi.org/10.1007/s11837-013-0735-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0735-8

Keywords

Navigation