Skip to main content
Log in

The Multiscale Origins of Fracture Resistance in Human Bone and Its Biological Degradation

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Akin to other mineralized tissues, human cortical bone can resist deformation and fracture due to the nature of its hierarchical structure, which spans the molecular to macroscopic length scales. Deformation at the smallest scales, mainly through the composite action of the mineral and collagen, contributes to bone’s strength or intrinsic fracture resistance, while crack-tip shielding mechanisms active on the microstructural scale contribute to the extrinsic fracture resistance once cracking begins. The efficiency with which these structural features can resist fracture at both small and large length scales becomes severely degraded with such factors as aging, irradiation, and disease. Indeed, aging and irradiation can cause changes to the cross-link profile at fibrillar length scales as well as changes at the three orders of magnitude larger scale of the osteonal structures, both of which combine to inhibit the bone’s overall resistance to initiation and growth of cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The crack resistance-curve or R-curve provides an assessment of the fracture toughness in the presence of subcritical crack growth. It involves measurements of the crack-driving force, e.g., the stress intensity K or J-integral, as a function of crack extension (Δa). The value of the driving force at Δa → 0 provides a measure of the crack-initiation toughness, whereas the slope (used in this study) and/or the maximum value of the R-curve can be used to characterize the crack-growth toughness. Indeed, the slope of a rising R-curve is directly related to the potency of the extrinsic toughening mechanism involved.

  2. A Gray (Gy) is a unit of adsorbed dose of ionizing radiation, equivalent to absorbed energy per unit mass (1 Gy ≡ 1 J/kg). At the low dose end, the average radiation from an abdominal x-ray is ~1.4 mGy; that from a pelvic CT scan is 25 mGy. At the high dose end (>10 kGy), gamma irradiation is commonly used to terminally sterilize allograft tissues and bones.

References

  1. D.B. Burr, J. Musculoskelet. Neuronal Interact. 4, 184 (2004).

    Google Scholar 

  2. S.L. Hui, C.W. Slemenda, and C.C. Johnston, J. Clin. Investig. 81, 1804 (1988).

    Article  Google Scholar 

  3. R.W. McCalden, J.A. McGeough, M.B. Barker, and C.M. Courtbrown, J. Bone Joint Surg. Am. 75A, 1193 (1993).

    Google Scholar 

  4. R.K. Nalla, J.J. Kruzic, J.H. Kinney, M. Balooch, J.W. Ager, and R.O. Ritchie, Mater. Sci. Eng. C 26, 1251 (2006).

    Article  Google Scholar 

  5. E.A. Zimmermann, E. Schaible, H. Bale, H.D. Barth, S.Y. Tang, P. Reichert, B. Busse, T. Alliston, J.W. Ager, and R.O. Ritchie, Proc. Natl. Acad. Sci. U.S.A. 108, 14416 (2011).

    Article  Google Scholar 

  6. H.D. Barth, M.E. Launey, A.A. MacDowell, J.W. Ager, and R.O. Ritchie, Bone 46, 1475 (2010).

    Article  Google Scholar 

  7. C.T. Vangsness, I.A. Garcia, C.R. Mills, M.A. Kainer, M.R. Roberts, and T.M. Moore, Am. J. Sports Med. 31, 474 (2003).

    Google Scholar 

  8. J.D. Almer and S.R. Stock, J. Struct. Biol. 152, 14 (2005).

    Article  Google Scholar 

  9. R. Voide, P. Schneider, M. Stauber, R. Wyss, M. Stampanoni, U. Sennhauser, G.H. van Lenthe, and R. Mueller, Bone 45, 164 (2009).

    Article  Google Scholar 

  10. H.D. Barth, E.A. Zimmermann, E. Schaible, S.Y. Tang, T. Alliston, and R.O. Ritchie, Biomaterials 32, 8892 (2011).

    Article  Google Scholar 

  11. A.J. Hodge and J.A. Petruska, Aspects of Protein Structure, ed. G.N. Ramachandran (New York: Academic Press, 1963),

    Google Scholar 

  12. W. Traub, T. Arad, and S. Weiner, Proc. Natl. Acad. Sci. U.S.A. 86, 9822 (1989).

    Article  Google Scholar 

  13. S. Weiner and W. Traub, FEBS Lett. 206, 262 (1986).

    Article  Google Scholar 

  14. A.L. Arsenault, Calcif. Tissue Int. 48, 56 (1991).

    Article  Google Scholar 

  15. W.J. Landis, K.J. Hodgens, M.J. Song, J. Arena, S. Kiyonaga, M. Marko, C. Owen, and B.F. McEwen, J. Struct. Biol. 117, 24 (1996).

    Article  Google Scholar 

  16. M.E. Maitland and A.L. Arsenault, Calcif. Tissue Int. 48, 341 (1991).

    Article  Google Scholar 

  17. A.J. Bailey, Mech. Ageing Dev. 122, 735 (2001).

    Article  Google Scholar 

  18. D.R. Eyre, I.R. Dickson, and K. Vanness, Biochem. J. 252, 495 (1988).

    Google Scholar 

  19. M. Saito, K. Marumo, K. Fujii, and N. Ishioka, Anal. Biochem. 253, 26 (1997).

    Article  Google Scholar 

  20. D.R. Sell and V.M. Monnier, J. Biol. Chem. 264, 21597 (1989).

    Google Scholar 

  21. P. Odetti, S. Rossi, F. Monacelli, A. Poggi, M. Cirnigliaro, M. Federici, and A. Federici, Ann. N.Y. Acad. Sci. 1043, 710 (2005).

    Article  Google Scholar 

  22. R.B. Martin and D.B. Burr, Structure, Function, and Adaptation of Compact Bone (New York: Raven, 1989).

    Google Scholar 

  23. M.E. Launey, M.J. Buehler, and R.O. Ritchie, Annu. Rev. Mater. Res. 40, 25 (2010).

    Article  Google Scholar 

  24. I. Jager and P. Fratzl, Biophys. J. 79, 1737 (2000).

    Article  Google Scholar 

  25. H.S. Gupta, W. Wagermaier, G.A. Zickler, J. Hartmann, S.S. Funari, P. Roschger, H.D. Wagner, and P. Fratzl, Int. J. Fract. 139, 425 (2006).

    Article  MATH  Google Scholar 

  26. H.S. Gupta, J. Seto, W. Wagermaier, P. Zaslansky, P. Boesecke, and P. Fratzl, Proc. Natl. Acad. Sci. U.S.A. 103, 17741 (2006).

    Article  Google Scholar 

  27. H.S. Gupta, W. Wagermaier, G.A. Zickler, D.R.B. Aroush, S.S. Funari, P. Roschger, H.D. Wagner, and P. Fratzl, Nano Lett. 5, 2108 (2005).

    Article  Google Scholar 

  28. B.H. Ji and H.J. Gao, J. Mech. Phys. Solids 52, 1963 (2004).

    Article  MATH  Google Scholar 

  29. G.E. Fantner, T. Hassenkam, J.H. Kindt, J.C. Weaver, H. Birkedal, L. Pechenik, J.A. Cutroni, G.A.G. Cidade, G.D. Stucky, D.E. Morse, and P.K. Hansma, Nat. Mater. 4, 612 (2005).

    Article  Google Scholar 

  30. S. Krauss, P. Fratzl, J. Seto, J.D. Currey, J.A. Estevez, S.S. Funari, and H.S. Gupta, Bone 44, 1105 (2009).

    Article  Google Scholar 

  31. M.J. Harrington, H.S. Gupta, P. Fratzl, and J.H. Waite, J. Struct. Biol. 167, 47 (2009).

    Article  Google Scholar 

  32. K.J. Koester, J.W. Ager, and R.O. Ritchie, Nat. Mater. 7, 672 (2008).

    Article  Google Scholar 

  33. R.K. Nalla, J.J. Kruzic, J.H. Kinney, and R.O. Ritchie, Biomaterials 26, 217 (2005).

    Article  Google Scholar 

  34. M. Saito and K. Marumo, Osteoporos. Int. 21, 195 (2010).

    Article  Google Scholar 

  35. T. Siegmund, M.R. Allen, and D.B. Burr, J. Biomech. 41, 1427 (2008).

    Article  Google Scholar 

  36. D. Vashishth, G.J. Gibson, J.I. Khoury, M.B. Schaffler, J. Kimura, and D.P. Fyhrie, Bone 28, 195 (2001).

    Article  Google Scholar 

  37. A.J. Bailey, T.J. Sims, E.N. Ebbesen, J.P. Mansell, J.S. Thomsen, and L. Mosekilde, Calcif. Tissue Int. 65, 203 (1999).

    Article  Google Scholar 

  38. X. Banse, T.J. Sims, and A.J. Bailey, J. Bone Miner. Res. 17, 1621 (2002).

    Article  Google Scholar 

  39. S. Viguet-Carrin, P. Garnero, and P.D. Delmas, Osteoporos. Int. 17, 319 (2006).

    Article  Google Scholar 

  40. X. Wang, X. Shen, X. Li, and C.M. Agrawal, Bone 31, 1 (2002).

    Article  Google Scholar 

  41. E.P. Paschalis, K. Verdelis, S.B. Doty, A.L. Boskey, R. Mendelsohn, and M. Yamauchi, J. Bone Miner. Res. 16, 1821 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health (NIH/NIDCR) under Grant No. 5R01 DE015633. We acknowledge the use of the two x-ray synchrotron beamlines 7.3.3 (SAXS/WAXD) and 8.3.2 (micro-tomography) at the Advanced Light Source at the Lawrence Berkeley National Laboratory (LBNL), which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. The authors wish to thank Dr. Tony Tomsia for his support, Drs. Maximilien Launey, Joel Ager, Hrishikesh Bale, Eric Schaible, and Alastair MacDowell at LBNL for their considerable experimental contributions, Prof. Tamara Alliston and Simon Tang at UCSF for performing the AGEs cross-link measurements, and Prof. Tony Keaveny and Mike Jekir at UC Berkeley for allowing us to use their facilities to machine bone samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Ritchie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, E.A., Barth, H.D. & Ritchie, R.O. The Multiscale Origins of Fracture Resistance in Human Bone and Its Biological Degradation. JOM 64, 486–493 (2012). https://doi.org/10.1007/s11837-012-0298-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0298-0

Keywords

Navigation