Skip to main content
Log in

Advanced Modeling Methods—Applications to Bone Fracture Mechanics

  • Biomechanics (G Niebur and J Wallace, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this review is to summarize recent advances in modeling of bone fracture using fracture mechanics–based approaches at multiple length scales spanning nano- to macroscale.

Recent Findings

Despite the additional information that fracture mechanics–based models provide over strength-based ones, the application of this approach to assessing bone fracture is still somewhat limited. Macroscale fracture models of bone have demonstrated the potential of this approach in uncovering the contributions of geometry, material property variation, as well as loading mode and rate on whole bone fracture response. Cortical and cancellous microscale models of bone have advanced the understanding of individual contributions of microstructure, microarchitecture, local material properties, and material distribution on microscale fracture resistance of bone. Nano/submicroscale models have provided additional insight into the effect of specific changes in mineral, collagen, and non-collagenous proteins as well as their interaction on energy dissipation and fracture resistance at small length scales.

Summary

Advanced modeling approaches based on fracture mechanics provide unique information about the underlying multiscale fracture mechanisms in bone and how these mechanisms are influenced by the structural and material constituents of bone at different length scales. Fracture mechanics–based modeling provides a powerful approach that complements experimental evaluations and advances the understanding of critical determinants of fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75.

    PubMed  Google Scholar 

  2. Engelke K, Libanati C, Fuerst T, Zysset P, Genant H. Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr Osteoporosis Rep. 2013;11(3):246–55.

    CAS  Google Scholar 

  3. Engelke K, van Rietbergen B, Zysset P. FEA to measure bone strength: a review. Clin Rev Bone Min Metabol. 2016;14(1):26–37.

    Google Scholar 

  4. Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng. 1999;44(9):1267–82.

    Google Scholar 

  5. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng. 1999;45(5):601–20.

    Google Scholar 

  6. Moës N, Belytschko T. Extended finite element method for cohesive crack growth. Eng Fract Mech. 2002;69(7):813–33.

    Google Scholar 

  7. Marco M, Giner E, Larraínzar-Garijo R, Caeiro JR, Miguélez MH. Modelling of femur fracture using finite element procedures. Eng Fract Mech. 2018;196:157–67.

    Google Scholar 

  8. Marco M, Giner E, Larraínzar-Garijo R, Caeiro JR, Miguélez MH. Numerical modelling of femur fracture and experimental validation using bone simulant. Ann Biomed Eng. 2017;45(10):2395–408.

    PubMed  Google Scholar 

  9. Ali AA, Cristofolini L, Schileo E, Hu H, Taddei F, Kim RH, et al. Specimen-specific modeling of hip fracture pattern and repair. J Biomech. 2014;47(2):536–43.

    PubMed  Google Scholar 

  10. Giambini H, Qin X, Dragomir-Daescu D, An K-N, Nassr A. Specimen-specific vertebral fracture modeling: a feasibility study using the extended finite element method. Med Biol Eng Comput. 2016;54(4):583–93.

    PubMed  Google Scholar 

  11. Demirtas A, Rajapakse CS, Ural A. Assessment of the multifactorial causes of atypical femoral fractures using a novel multiscale finite element approach. Bone. 2020;135:115318.

  12. Ural A. Prediction of Colles’ fracture load in human radius using cohesive finite element modeling. J Biomech. 2009;42(1):22–8.

    PubMed  Google Scholar 

  13. Buchanan D, Ural A. Finite element modeling of the influence of hand position and bone properties on the Colles’ fracture load during a fall. J Biomech Eng. 2010;132(8):081007.

  14. Ural A, Zioupos P, Buchanan D, Vashishth D. Evaluation of the influence of strain rate on Colles’ fracture load. J Biomech. 2012;45(10):1854–7.

    PubMed  PubMed Central  Google Scholar 

  15. Ural A, Mischinski S. Multiscale modeling of bone fracture using cohesive finite elements. Eng Fract Mech. 2013;103:141–52.

    Google Scholar 

  16. Ural A, Bruno P, Zhou B, Shi XT, Guo XE. A new fracture assessment approach coupling HR-pQCT imaging and fracture mechanics-based finite element modeling. J Biomech. 2013;46(7):1305–11.

    PubMed  PubMed Central  Google Scholar 

  17. Hambli R, Allaoui S. A robust 3D finite element simulation of human proximal femur progressive fracture under stance load with experimental validation. Ann Biomed Eng. 2013;41(12):2515–27.

    PubMed  Google Scholar 

  18. Fish J, Hu N. Multiscale modeling of femur fracture. Int J Numer Methods Eng. 2017;111(1):3–25.

    Google Scholar 

  19. Ural A, Vashishth D. Cohesive finite element modeling of age-related toughness loss in human cortical bone. J Biomech. 2006;39(16):2974–82.

    PubMed  Google Scholar 

  20. Ural A, Vashishth D. Anisotropy of age-related toughness loss in human cortical bone: a finite element study. J Biomech. 2007;40(7):1606–14.

    PubMed  Google Scholar 

  21. Ural A, Zioupos P, Buchanan D, Vashishth D. The effect of strain rate on fracture toughness of human cortical bone: a finite element study. J Mech Behav Biomed Mater. 2011;4(7):1021–32.

    PubMed  PubMed Central  Google Scholar 

  22. Ural A, Vashishth D. Effects of intracortical porosity on fracture toughness in aging human bone: a microCT-based cohesive finite element study. J Biomech Eng. 2007;129(5):625–31.

    PubMed  Google Scholar 

  23. Tang S, Vashishth D. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone. J Biomech. 2011;44(2):330–6.

    CAS  PubMed  Google Scholar 

  24. Yang Q, Cox BN, Nalla RK, Ritchie R. Fracture length scales in human cortical bone: the necessity of nonlinear fracture models. Biomaterials. 2006;27(9):2095–113.

    CAS  PubMed  Google Scholar 

  25. Wang Z, Vashishth D, Picu RC. Eigenstrain toughening in presence of elastic heterogeneity with application to bone. Int J Solids Struct. 2018;144–145:137–44.

    PubMed  PubMed Central  Google Scholar 

  26. Pereira F, De Moura M, Dourado N, Morais J, Xavier J, Dias M. Direct and inverse methods applied to the determination of mode I cohesive law of bovine cortical bone using the DCB test. Int J Solids Struct. 2017;128:210–20.

    Google Scholar 

  27. Pereira F, de Moura M, Dourado N, Morais J, Xavier J, Dias M. Determination of mode II cohesive law of bovine cortical bone using direct and inverse methods. Int J Mech Sci. 2018;138:448–56.

    Google Scholar 

  28. You T, Kim Y-R, Park T. Two-way coupled multiscale model for predicting mechanical behavior of bone subjected to viscoelastic deformation and fracture damage. J Eng Mater Technol. 2017;139(2):021016.

  29. Hoffseth K, Randall C, Chandrasekar S, Hansma P, Yang HTY. Analyzing the effect of hydration on the wedge indentation fracture behavior of cortical bone. J Mech Behav Biomed Mater. 2017;69:318–26.

    PubMed  Google Scholar 

  30. Besdo S, Vashishth D. Extended finite element models of introcortical porosity and heterogeneity in cortical bone. Comput Mater Sci. 2012;64:301–5.

    PubMed  PubMed Central  Google Scholar 

  31. Feerick EM, Liu XC, McGarry P. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM). J Mech Behav Biomed Mater. 2013;20:77–89.

    PubMed  Google Scholar 

  32. Abdel-Wahab AA, Silberschmidt VV. Numerical modelling of impact fracture of cortical bone tissue using X-FEM. J Theor Appl Mech. 2011;49:599–619.

    Google Scholar 

  33. Mischinski S, Ural A. Finite element modeling of microcrack growth in cortical bone. J Appl Mech. 2011;78(4):041016.

    Google Scholar 

  34. Gustafsson A, Khayyeri H, Wallin M, Isaksson H. An interface damage model that captures crack propagation at the microscale in cortical bone using XFEM. J Mech Behav Biomed Mater. 2019;90:556–65.

    PubMed  Google Scholar 

  35. Gustafsson A, Wallin M, Khayyeri H, Isaksson H. Crack propagation in cortical bone is affected by the characteristics of the cement line: a parameter study using an XFEM interface damage model. Biomech Model Mechanobiol. 2019;18(4):1247–61.

    PubMed  PubMed Central  Google Scholar 

  36. Mischinski S, Ural A. Interaction of microstructure and microcrack growth in cortical bone: a finite element study. Comput Methods Biomech Biomed Engin. 2013;16:81–94.

    PubMed  Google Scholar 

  37. Wang M, Li S, Vom Scheidt A, Qwamizadeh M, Busse B, Silberschmidt VV. Numerical study of crack initiation and growth in human cortical bone: effect of micro-morphology. Eng Fract Mech. 2020;232:107051.

  38. Budyn E, Hoc T, Jonvaux J. Fracture strength assessment and aging signs detection in human cortical bone using an X-FEM multiple scale approach. Comput Mech. 2008;42(4):579–91.

    Google Scholar 

  39. Li S, Abdel-Wahab A, Demirci E, Silberschmidt VV. Fracture process in cortical bone: X-FEM analysis of microstructured models. Int J Fract. 2013;184(1–2):43–55.

    Google Scholar 

  40. Budyn E, Hoc T. Analysis of micro fracture in human Haversian cortical bone under transverse tension using extended physical imaging. Int J Numer Methods Eng. 2010;82(8):940–65.

    Google Scholar 

  41. Abdel-Wahab AA, Maligno AR, Silberschmidt VV. Micro-scale modelling of bovine cortical bone fracture: analysis of crack propagation and microstructure using X-FEM. Comput Mater Sci. 2012;52(1):128–35.

    Google Scholar 

  42. Gustafsson A, Wallin M, Isaksson H. Age-related properties at the microscale affect crack propagation in cortical bone. J Biomech. 2019;95:109326.

    PubMed  Google Scholar 

  43. Idkaidek A, Jasiuk I. Cortical bone fracture analysis using XFEM–case study. Int J Numerical Methods Biomed Eng. 2017;33(4):e2809.

    Google Scholar 

  44. Idkaidek A, Koric S, Jasiuk I. Fracture analysis of multi-osteon cortical bone using XFEM. Comput Mech. 2018;62(2):171–84.

    Google Scholar 

  45. Rodriguez-Florez N, Carriero A, Shefelbine SJ. The use of XFEM to assess the influence of intra-cortical porosity on crack propagation. Comp Methods Biomechan Biomed Eng. 2017;20(4):385–92.

    Google Scholar 

  46. Razi H, Predan J, Fischer FD, Kolednik O, Fratzl P. Damage tolerance of lamellar bone. Bone. 2020;130:115102.

    PubMed  Google Scholar 

  47. Hamed E, Jasiuk I. Multiscale damage and strength of lamellar bone modeled by cohesive finite elements. J Mech Behav Biomed Mater. 2013;28:94–110.

    PubMed  Google Scholar 

  48. Demirtas A, Curran E, Ural A. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling. Bone. 2016;91:92–101.

    CAS  PubMed  Google Scholar 

  49. Demirtas A, Ural A. Interaction of microcracks and tissue compositional heterogeneity in determining fracture resistance of human cortical bone. J Biomech Eng. 2018;140(9):091003.

  50. Demirtas A, Ural A. Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone. Biomech Model Mechanobiol. 2018;17(5):1415–28.

    PubMed  Google Scholar 

  51. Jonvaux J, Hoc T, Budyn E. Analysis of micro fracture in human Haversian cortical bone under compression. Int J Num Methods Biomed Eng. 2012;28(9):974–98.

    CAS  Google Scholar 

  52. Dapaah D, Badaoui R, Bahmani A, Montesano J, Willett T. Modelling the micro-damage process zone during cortical bone fracture. Eng Fract Mech. 2020;224:106811.

    Google Scholar 

  53. Giner E, Belda R, Arango C, Vercher-Martínez A, Tarancón JE, Fuenmayor FJ. Calculation of the critical energy release rate Gc of the cement line in cortical bone combining experimental tests and finite element models. Eng Fract Mech. 2017;184:168–82.

    Google Scholar 

  54. Giner E, Arango C, Vercher A, Fuenmayor FJ. Numerical modelling of the mechanical behaviour of an osteon with microcracks. J Mech Behav Biomed Mater. 2014;37:109–24.

    CAS  PubMed  Google Scholar 

  55. Marco M, Belda R, Miguélez MH, Giner E. A heterogeneous orientation criterion for crack modelling in cortical bone using a phantom-node approach. Finite Elem Anal Des. 2018;146:107–17.

    Google Scholar 

  56. Soni A, Kumar S, Kumar N. Effect of parametric uncertainties on fracture behavior of cortical bone using XIGA. Eng Fract Mech. 2020;233:107079.

  57. Tomar V. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method. J Biomech Eng. 2008;130(2):021021.

  58. Tomar V. Insights into the effects of tensile and compressive loadings on microstructure dependent fracture of trabecular bone. Eng Fract Mech. 2009;76(7):884–97.

    Google Scholar 

  59. Hammond MA, Wallace JM, Allen MR, Siegmund T. Mechanics of linear microcracking in trabecular bone. J Biomech. 2019;83:34–42.

    PubMed  Google Scholar 

  60. Fan R, Gong H, Zhang X, Liu J, Jia Z, Zhu D. Modeling the mechanical consequences of age-related trabecular bone loss by XFEM simulation. Comput Mathemat Methods Med. 2016;2016:1–12.

    CAS  Google Scholar 

  61. Salem M, Westover L, Adeeb S, Duke K. An equivalent constitutive model of cancellous bone with fracture prediction. J Biomech Eng. 2020. https://doi.org/10.1115/1.4047080.

  62. Belda R, Palomar M, Peris-Serra JL, Vercher-Martínez A, Giner E. Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling. Int J Mech Sci. 2020;165:105213.

    Google Scholar 

  63. Hambli R. Micro-CT finite element model and experimental validation of trabecular bone damage and fracture. Bone. 2013;56(2):363–74.

    PubMed  Google Scholar 

  64. Harrison NM, McDonnell P, Mullins L, Wilson N, O’Mahoney D, McHugh PE. Failure modelling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach. Biomech Model Mechanobiol. 2013;12(2):225–41.

    PubMed  Google Scholar 

  65. Hambli R, Frikha S, Toumi H, Tavares JMR. Finite element prediction of fatigue damage growth in cancellous bone. Comp Methods Biomechan Biomed Eng. 2016;19(5):563–70.

    Google Scholar 

  66. Siegmund T, Allen MR, Burr DB. Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking. J Biomech. 2008;41(7):1427–35.

    PubMed  Google Scholar 

  67. Abueidda DW, Sabet FA, Jasiuk IM. Modeling of stiffness and strength of bone at nanoscale. J Biomech Eng. 2017;139(5):051006–10.

    Google Scholar 

  68. Luo Q, Nakade R, Dong X, Rong Q, Wang X. Effect of mineral–collagen interfacial behavior on the microdamage progression in bone using a probabilistic cohesive finite element model. J Mech Behav Biomed Mater. 2011;4(7):943–52.

    CAS  PubMed  Google Scholar 

  69. Lai ZB, Yan C. Mechanical behaviour of staggered array of mineralised collagen fibrils in protein matrix: effects of fibril dimensions and failure energy in protein matrix. J Mech Behav Biomed Mater. 2017;65:236–47.

    CAS  PubMed  Google Scholar 

  70. De Falco P, Barbieri E, Pugno N, Gupta H. Staggered fibrils and damageable interfaces lead concurrently and independently to hysteretic energy absorption and inhomogeneous strain fields in cyclically loaded antler bone. ACS Biomater Sci Eng. 2017;3(11):2779–87.

  71. Lin L, Samuel J, Zeng X, Wang X. Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model. J Mech Behav Biomed Mater. 2017;65:224–35.

    CAS  PubMed  Google Scholar 

  72. Maghsoudi-Ganjeh M, Lin L, Wang X, Zeng X. Computational investigation of ultrastructural behavior of bone using a cohesive finite element approach. Biomech Model Mechanobiol. 2019;18(2):463–78.

    PubMed  Google Scholar 

  73. Maghsoudi-Ganjeh M, Wang X, Zeng X. Computational investigation of the effect of water on the nanomechanical behavior of bone. J Mech Behav Biomed Mater. 2020;101:103454.

    CAS  PubMed  Google Scholar 

  74. Xu M, An B. An analysis of fracture in staggered mineralized collagen fibril arrays. Int J Solids Struct. 2020;193–194:535–49.

    Google Scholar 

  75. Wang Y, Ural A. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior. J Biomech. 2018;66:70–7.

    PubMed  Google Scholar 

  76. Wang Y, Ural A. Effect of modifications in mineralized collagen fibril and extra-fibrillar matrix material properties on submicroscale mechanical behavior of cortical bone. J Mech Behav Biomed Mater. 2018;82:18–26.

    CAS  PubMed  Google Scholar 

  77. Wang Y, Ural A. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks. J Mech Behav Biomed Mater. 2019;100:103361.

    CAS  PubMed  Google Scholar 

  78. Wang Z, Vashishth D, Picu R. Bone toughening through stress-induced non-collagenous protein denaturation. Biomech Model Mechanobiol. 2018;17:1093–1106.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ani Ural.

Ethics declarations

Conflict of Interest

Ani Ural declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biomechanics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ural, A. Advanced Modeling Methods—Applications to Bone Fracture Mechanics. Curr Osteoporos Rep 18, 568–576 (2020). https://doi.org/10.1007/s11914-020-00615-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00615-1

Keywords

Navigation