Skip to main content
Log in

Characterization and modeling of heterogeneous deformation in commercial purity titanium

  • Nanomaterials: Mechanical Behavior
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Heterogeneous deformation, including local dislocation shear activity and lattice rotation, was analyzed in microstructure patches of polycrystalline commercial purity titanium specimens using three different experimental methods. The measurements were compared with crystal plasticity finite element simulations for the same region that incorporate a local phenomenological hardening constitutive model. The dislocation activity was measured using techniques associated with atomic force microscopy, confocal microscopy, three-dimensional x-ray diffraction, and nano-indentation. The results indicate that a major challenge for model development is to effectively predict conditions where slip transfer occurs, and where geometrically necessary dislocations accumulate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Lebensohn and C.N. Tome, Acta Metall. Mater., 41(9) (1993), pp. 2611–2624.

    Article  CAS  Google Scholar 

  2. Z. Yao and R.H. Wagoner, Acta Metall. Mater., 41(2) (1993), pp. 451–468.

    Article  Google Scholar 

  3. F. Delaire, J.L. Raphanel, and C. Rey, Acta Mater., 48(5) (2000), pp. 1075–1087.

    Article  CAS  Google Scholar 

  4. S. Zaefferer, Mater. Sci. Eng. A, 344 (2000), pp. 20–30.

    Google Scholar 

  5. F. Bridier, P. Villechaise, and J. Mendez, Acta Mater., 53 (2005), pp. 555–567.

    Article  CAS  Google Scholar 

  6. J.W. Christian and S. Mahajan, Prog. Mater. Sci., 39 (1995), pp. 1–157.

    Article  Google Scholar 

  7. F.P.E. Dunne, D. Rugg, and A. Walker, Int. J. Plasticity, 23 (2007), pp. 1061–1083.

    Article  CAS  Google Scholar 

  8. R. Becker and S. Panchanadeeswaran, Acta Metall. Mater., 43 (1995), pp. 2701–2719.

    Article  CAS  Google Scholar 

  9. D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, and S. Zaefferer, Acta Mater., 49 (2001), pp. 3433–3441.

    Article  CAS  Google Scholar 

  10. S.R. Kalidindi, A. Bhattacharyya, and R.D. Doherty, Proc. R. Soc. Lond., 460A (2004), pp. 1935–1956.

    Google Scholar 

  11. F. Roters, Comput. Mater. Sci., 32 (2005), p. 509.

    Article  Google Scholar 

  12. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater., 58 (2010), p. 1152.

    Article  CAS  Google Scholar 

  13. L. Wang, R. Barabash, Y. Yang, T.R. Bieler, M.A. Crimp, P. Eisenlohr, W.J. Liu, and G.E. Ice, Metall. Mater. Trans. A, 42A (2011), pp. 626–635.

    Article  Google Scholar 

  14. Y. Yang, L. Wang, T.R. Bieler, P. Eisenlohr, and M.A. Crimp, Met. Mat. Trans., 42A (2011), pp. 636–644.

    Article  Google Scholar 

  15. B. Wagenknecht, D. Libiran, S. Poon, and K. Sztykiel, “In-Situ Four-Point Bending Apparatus for Scanning Electron Micro-scopes” (Senior Design Project, Mechanical Engineering, Michigan State University, Apr. 2008).

  16. S.R. Kalidindi, C.A. Bronkhorst, and L. Anand, J. Mech. Phys. Solids, 40 (1992), pp. 537–569.

    Article  CAS  Google Scholar 

  17. S.R. Kalidindi and L. Anand, Metall. Trans. A, 24A (1993), pp. 989–992.

    CAS  Google Scholar 

  18. A.A. Salem, S.R. Kalidindi, and S.L. Semiatin, Acta Materialia, 53 (2005), pp. 3495–3502.

    Article  CAS  Google Scholar 

  19. C. Zambaldi and D. Raabe, Acta Mater., 58 (2010), p. 3516.

    Article  CAS  Google Scholar 

  20. C. Zambaldi, Y. Yang. T.R. Bieler, and D. Raabe, J. Mater. Res., (accepted for 2012 publication).

  21. B.A. Simkin, B.C. Ng, T.R. Bieler, M.A. Crimp, and D.E. Mason, Intermetallics, 11 (2003), pp. 215–223.

    Article  CAS  Google Scholar 

  22. J. Nelder and R. Mead, Computer Journal, 7 (1965), p. 308.

    Google Scholar 

  23. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes C++ (Cambridge, U.K.: Cambridge University Press, 2007).

    Google Scholar 

  24. V. Vitek, A. Mrovec, R. Groger, J.L. Bassani, V. Racherla, and L. Yin, Mater. Sci. and Eng., A-387 (2004), pp. 138–142.

    Article  Google Scholar 

  25. M.A. Tschopp, D.E. Spearot, and D.L. McDowell, Dislocations in Solids, Vol. 14, ed. J.P. Hirth (Cambridge, MA: Elsevier Publishers, 2008), pp. 43–140.

    Google Scholar 

  26. L. Wang, Y. Yang, P. Eisenlohr, T.R. Bieler, M.A. Crimp, and D.E. Mason, Metall. Mater. Trans. A, 41 (2010), pp. 421–430.

    Article  CAS  Google Scholar 

  27. L. Wang, P. Eisenlohr, Y. Yang, T.R. Bieler, and M.A. Crimp, Scripta Materialia, 63 (2010), pp. 827–830.

    Article  CAS  Google Scholar 

  28. I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, and C.N. Tome, Philosophical Magazine, 90 (2010), pp. 2161–2190.

    Article  CAS  Google Scholar 

  29. J. Wang, R.G. Hoagland, J.P. Hirth, L. Capolungo, I.J. Beyerlein, and C.N. Tomé, Scripta Materialia, 61 (2009b), pp. 903–906.

    Article  CAS  Google Scholar 

  30. R. Barabash, G. Ice, B. Larson, G.M. Pharr, K.-S. Chung, and W. Yang, Appl. Phys. Letters, 79 (2001), pp. 749–751.

    Article  CAS  Google Scholar 

  31. W. Liu, G.E. Ice, B.C. Larsen, W. Yang, and J.Z. Tischler, Ultramicroscopy, 103 (2005), pp. 199–204.

    Article  CAS  Google Scholar 

  32. R.I. Barabash, G.E. Ice, M. Kumar, J. Ilavsky, and J. Belak, Int. J. Plast., 25 (2009), pp. 2081–2093.

    Article  CAS  Google Scholar 

  33. L. Wang, “Evolution of Deformation Twins and Dislocation Near Grain Boundaries in Commercial Purity Titanium” (Ph.D. Dissertation, Michigan State University, 2011).

  34. A.W. Sleeswyk, Acta Metallurgica, 10 (1962), pp. 705–725.

    Article  CAS  Google Scholar 

  35. S. Mahajan and G.Y. Chin, Acta Metallurgica, 22 (1974), pp. 1113–1119.

    Article  CAS  Google Scholar 

  36. S. Vaidya and S. Mahajan, Acta Metallurgica, 28 (1980), pp. 1123–1131.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Bieler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Wang, L., Zambaldi, C. et al. Characterization and modeling of heterogeneous deformation in commercial purity titanium. JOM 63, 66–73 (2011). https://doi.org/10.1007/s11837-011-0161-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0161-8

Keywords

Navigation