Skip to main content
Log in

Fast fourier transform-based modeling for the determination of micromechanical fields in polycrystals

  • Polycrystal Modeling
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Emerging characterization methods in experimental mechanics pose a challenge to modelers to devise efficient formulations that permit interpretation and exploitation of the massive amount of data generated by these novel methods. In this overview we report on a numerical formulation based on fast Fourier transforms, developed over the last 15 years, which can use the voxelized microstructural images of heterogeneous materials as input to predict their micromechanical and effective response. The focus of this presentation is on applications of the method to plastically-deforming polycrystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.D. Uchic, M.A. Groeber, D.M. Dimiduk, and J.P. Simmons, Scripta Mater., 55 (2006), pp. 23–28.

    Article  CAS  Google Scholar 

  2. E.M. Lauridsen, S.R. Dey, R.W. Fonda, and D. Juul-Jensen, JOM, 58(12) (2006), pp. 40–44.

    Article  Google Scholar 

  3. J.S. Park, P. Revecz, A. Kazimirov, and M.P. Miller, Rev. Sci. Instrum., 78 (2007), p. 023910.

    Article  Google Scholar 

  4. J. Oddershede et al., J. Appl. Crystallogr., 43 (2010), pp. 539–549.

    Article  CAS  Google Scholar 

  5. H. Moulinec and P. Suquet, C.R. Acad. Sci. Paris II, 318 (1994), pp. 1417–1423.

    Google Scholar 

  6. H. Moulinec and P. Suquet, Comput. Meth. Appl. Mech. Eng., 157 (1998), pp. 69–94.

    Article  Google Scholar 

  7. F. Roters et al., Acta Mater., 58 (2010), pp. 1152–1211.

    Article  CAS  Google Scholar 

  8. J.C. Michel, H. Moulinec, and P. Suquet, Comput. Model. Eng. Sci., 1 (2000) pp. 79–88.

    Google Scholar 

  9. J.C. Michel, H. Moulinec, and P. Suquet, Int. J. Numer. Methods Eng., 52 (2001), pp. 139–158.

    Article  Google Scholar 

  10. R.A. Lebensohn, Acta Mater., 49 (2001), pp. 2723–2737.

    Article  CAS  Google Scholar 

  11. R.A. Lebensohn, Y. Liu, and P. Ponte Castañeda, Acta Mater., 52 (2004), pp. 5347–5361.

    Article  CAS  Google Scholar 

  12. R.A. Lebensohn, R. Brenner, O. Castelnau, and A.D. Rollett, Acta Mater., 56 (2008), pp. 3914–3926.

    Article  CAS  Google Scholar 

  13. Y.U. Wang, Y.M.M. Jin, and A.G. Khachaturyan, J. Appl. Phys,. 92 (2002), pp. 1351–1360.

    Article  CAS  Google Scholar 

  14. D.J. Eyre and G.W. Milton, J. Phys. III, 6 (1999), pp. 41–47.

    Google Scholar 

  15. S. Brisard and L. Dormieux, Comput. Mater. Sci., 49 (2010), pp. 663–671.

    Article  Google Scholar 

  16. J. Zeman, I. Vondrejc, J. Novak, and I. Marek, J. Comput. Phys., 229 (2010), pp 8065–8071.

    Article  CAS  Google Scholar 

  17. F. Willot and Y.P. Pellegrini, Continuum Models and Discrete Systems, ed. D. Jeulin and S. Forest (Paris: Presses Mines ParisTech, 2008), pp. 443–450.

    Google Scholar 

  18. R.J. Asaro and A. Needleman, Acta Metall., 33 (1985), pp. 923–953.

    Article  CAS  Google Scholar 

  19. R.A. Lebensohn, O. Castelnau, R. Brenner, and P. Gilormini, Int. J. Solids Struct., 42 (2005), pp. 5441–5459.

    Article  CAS  Google Scholar 

  20. R.A. Lebensohn et al., Acta Mater., 57 (2009), pp. 1405–1415.

    Article  CAS  Google Scholar 

  21. R.A. Lebensohn, M.I. Idiart, P. Ponte Castañeda, and P.G. Vincent, Phil. Mag., in press.

  22. I.L. Dillamore, P.L. Morris, C.J.E. Smith, and W.B. Hutchinson, Proc. R. Soc. London A, 329 (1972), pp. 405–420.

    Article  CAS  Google Scholar 

  23. A.D. Rollett et al., Model. Simul. Mater. Sci. Eng,. 18 (2010), 074005.

    Article  Google Scholar 

  24. T. Saito and J.I. Toriwaki, Pattern Recognit., 27 (1994), pp. 1551–1565.

    Article  Google Scholar 

  25. C. Hefferan et al., Comput. Mater. Continua, 14 (2010), pp. 209–219.

    Google Scholar 

  26. N. Lahellec, J.C. Michel, H. Moulinec, and P. Suquet, IUTAM Symposium on Computational Mechanics of Solids Materials, ed. C. Miehe (Dordretcht: Kluwer Academic, 2001), pp. 247–268.

    Google Scholar 

  27. P.A. Turner and C.N. Tomé, Acta Metall. Mater., 42 (1994), pp. 4143–4153.

    Article  CAS  Google Scholar 

  28. J.E. Bozek et al., Modeling Simul. Mater. Sci. Eng., 16 (2008), p. 065007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Lebensohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebensohn, R.A., Rollett, A.D. & Suquet, P. Fast fourier transform-based modeling for the determination of micromechanical fields in polycrystals. JOM 63, 13–18 (2011). https://doi.org/10.1007/s11837-011-0037-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0037-y

Keywords

Navigation