Skip to main content
Log in

Directionally solidified biopolymer scaffolds: Mechanical properties and endothelial cell responses

  • Biological and Biomedical Materials / Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Vascularization is a primary challenge in tissue engineering. To achieve it in a tissue scaffold, an environment with the appropriate structural, mechanical, and biochemical cues must be provided enabling endothelial cells to direct blood vessel growth. While biochemical stimuli such as growth factors can be added through the scaffold material, the culture medium, or both, a well-designed tissue engineering scaffold is required to provide the necessary local structural and mechanical cues. As chitosan is a well-known carrier for biochemical stimuli, the focus of this study was on structure-property correlations, to evaluate the effects of composition and processing conditions on the three-dimensional architecture and properties of freeze-cast scaffolds; to establish whether freeze-east scaffolds are promising candidates as constructs promoting vascularization; and to conduct initial tissue culture studies with endothelial cells on flat substrates of identical compositions as those of the scaffolds to test whether these are biocompatible and promote cell attachment and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Lavik and R. Langer, Applied Microbiology and Biotechnology, 65(1) (2004), pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  2. H. Greene, Exp. Med, 73 (1941), pp. 461–74.

    Article  CAS  Google Scholar 

  3. G.F. Muschler, C. Nakamoto, and L.G. Griffith, J. Bone & Joint Surgery, 86-A(7) (2004), pp. 1541–1558.

    Google Scholar 

  4. E. Polykandriotis et al., J. Cellular and Molecular Medicine, 11(1) (2007), pp. 6–20.

    Article  CAS  Google Scholar 

  5. M. Shin et al., Biomedical Microdevices, 6(4) (2004), pp. 269–278.

    Article  CAS  PubMed  Google Scholar 

  6. J.T. Borenstein et al., Biomedical Microdevices, 4(3) (2002), pp. 167–175.

    Article  CAS  Google Scholar 

  7. H.J. Kong et al., Proceedings of the National Academy of Sciences of the United States of America, 102(12) (2005), pp. 4300–4305.

    Article  CAS  PubMed  ADS  Google Scholar 

  8. S. Huang and D.E. Ingber, Nature Cell Biology, 1(5) (1999), pp. E131–E138.

    Article  CAS  PubMed  Google Scholar 

  9. V. Karageorgiou and D. Kaplan, Biomaterials, 26(27) (2005), pp. 5474–5491.

    Article  CAS  PubMed  Google Scholar 

  10. H.P. Greisler et al., Surgery, 112(2) (1992), pp. 244–255.

    CAS  PubMed  Google Scholar 

  11. K.M. Chrobak, D.R. Potter, and J. Tien, Microvascular Research, 71(3) (2006), pp. 185–196.

    Article  CAS  PubMed  Google Scholar 

  12. S. Deville et al., Science, 27(5760) (2006), pp. 515–518.

    Article  ADS  Google Scholar 

  13. U.G.K. Wegst et al., Phil. Trans. R. Soc. A, 368 (2010), pp. 2099–2121.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. R.A.A Muzzarelli, Carbohydrate Polymers, 76 (2009), pp. 167–182.

    Article  CAS  Google Scholar 

  15. S.V. Madihally and H.W.T. Matthew, Biomaterials, 20 (1999), pp. 1133–1142.

    Article  CAS  PubMed  Google Scholar 

  16. M.F. Ashby, Phil. Trans. R. Soc. A, 364 (2006), pp. 15–30.

    Article  CAS  PubMed  MathSciNet  ADS  Google Scholar 

  17. L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties (Cambridge, U.K.: Cambridge University Press, 1997).

    Google Scholar 

  18. N.E. Suyatma et al., J. Polym. Environ., 12 (2004), pp. 1–6.

    Article  CAS  Google Scholar 

  19. N. Cao, Y. Fu, and J. He, Food Hydrocolloids, 21 (2007), pp. 1153–1162.

    Article  CAS  Google Scholar 

  20. G. Fels, Journal of Applied Polymer Science, 8 (1964), pp. 1813–1824.

    Article  CAS  Google Scholar 

  21. J.M. Chupa et al., Biomaterials, 21 (2000), pp. 2315–2322.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Huang et al., Biomaterials, 26 (2005), pp. 7616–7627.

    Article  CAS  PubMed  Google Scholar 

  23. J.L. Cuy et al., J. Biomed. Mater. Res., 67A (2003), pp. 538–547.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike G. K. Wegst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meghri, N.W., Donius, A.E., Riblett, B.W. et al. Directionally solidified biopolymer scaffolds: Mechanical properties and endothelial cell responses. JOM 62, 71–75 (2010). https://doi.org/10.1007/s11837-010-0112-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0112-9

Keywords

Navigation