Skip to main content
Log in

The ancient brass cementation processes revisited by extensive experimental simulation

  • Feature
  • Archaeotechnology
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Prior to the mastering of metallic zinc production in the mid-19th century, brass making in Europe was based on the so-called cementation process: within a more or less closed vessel, gaseous zinc is produced by the carbothermic reduction of zinc ore at around 1,000°C (±100°C), and simultaneously diffuses into metallic copper. Few ancient brass objects dated before the Industrial Revolution analyzed so far bear more than 30 wt.% zinc, so that this zinc content value has become a dating criterion for these artifacts. The systematic laboratory-scale experimental simulations of the ancient process presented here permit the multiple influences of temperature, isothermal treatment duration, and initial Zn/Cu ratio on the zinc content of the final products, and on the zinc recovery rates as well, to be investigated for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.T. Craddock and K. Eckstein, “Production of Brass in Antiquity by Direct Reduction,” Mining and Metal Production through the Ages, ed. R Craddock and J. Lang (London: Archetype, 2003), pp. 216–230.

    Google Scholar 

  2. B.P. Jalan and Y.K. Rao, The Reduction of Zinc Oxide by Carbon“Non-Catalyzed Reaction (Montreal, ON, Canada: Metall. Soc. CIM, 1977), pp. 1–5.

    Google Scholar 

  3. J. Maréchal, “La Fabrication du Laiton Avant la Decouverte du Precédé Dony d’extraction du Zinc,” Bulletin Scientifique de l’Association des Eleves des Ecoles Speciales (AEES), 36(1) (1938), pp. 1–13.

    MathSciNet  Google Scholar 

  4. J. Day, “Brass and Zinc in Europe from the Middle Ages until the Mid-nineteenth Century,” 2000 Years of Zinc and Brass, ed. P.T. Craddock (London: British Museum, 1998), pp. 132–158.

    Google Scholar 

  5. O. Werner, “Liber das Vorkommen von Zink und Messing im Altertum und im Mittelalter,” Erzmetall, 23(6) (1970), pp. 259–296.

    CAS  Google Scholar 

  6. G. Rolandi and G. Scaciatti, “Ottone e Zinco presso gli Antichi,” Industria Mineraria (November 1956), pp. 759–770.

  7. K. Maedecke, “Gleichgewichtsverhältnisse bei der Messingherstellung nach dem Galmeiverfahren,” Erzmetall, 26(5) (1973), pp. 229–233.

    Google Scholar 

  8. H. Grothe, “Uber die Herstellung von Messing nach dem alten Galmeiverfahren,” Erzmetall, 24(12) (1971), pp. 587–592.

    CAS  Google Scholar 

  9. J.M. Welter and F. Revet, “Precédé de Recyclage de Dechets de Fonderies de Laitons” O.E.D. brevets FR 2-762-328 (1997).

  10. H. Ullwer, “Messingherstellung nach dem alten Galmeiverfahren,” Erzmetall, 54(6) (2001), pp. 319–326.

    CAS  Google Scholar 

  11. B. Newbury et al., “Revisiting the Zinc Composition Limit of Cementation Brass,” Historical Metallurgy, 39 (2005), pp. 75–81.

    CAS  Google Scholar 

  12. H. Ullwer, “Das alter Galmeiverfahren und die Erreichbarren Zinkgehalte,” Erzmetall, 61(5) (2008), pp. 324–327.

    Google Scholar 

  13. M. Martinon-Torres and T. Rehren, “Agricola and Zwickau: Theory and Practice of Renaissance Brass Production in SE Germany;” Historical Metallurgy, 36 (2002), pp. 95–111.

    CAS  Google Scholar 

  14. J.-M. Welter, “The Zinc Content of Brass: A Chronological Indicator,” Techné, 18 (2003), pp. 27–36.

    Google Scholar 

  15. T. Rehren and M. Martinon-Torres, “Naturam ars Imitata: European Brassmaking between Craft and Science,” Archaeology, History and Science. Integrated Approaches to Ancient Materials, ed. M. Martinon-Torres and T. Rehren (Walnut Creek, CA: Left Coast Press, 2008), pp. 167–188.

    Google Scholar 

  16. D. Bourgarit and N. Thomas, “Texts versus Experiments: New Insights on the Brass-cementation Process,” Journal of Archaeological Science (in prep.).

  17. P.R.S. Moorey, Materials and Manufacture in Ancient Mesopotamia: The Evidence of Archaeology and Art-Metals and Metalwork, Glazed Materials and Glass, British Archaeological Reports, International Series, ccxxxvii (Oxford: 1985).

  18. R.F. Tylecote, A History of Metallurgy (London: Institute of Metals, 1992).

    Google Scholar 

  19. T. Calligaro et al., “Development of an External Beam Nuclear Microprobe on the AGLAE Facility of the Louvre Museum,” Nuclear Instr. and Methods in Phys. Research, Section B, 161 (2000), pp. 328–333.

    Article  ADS  Google Scholar 

  20. O. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry, 5th ed. (Int. Series on Materials Sciences and Technology), Vol. 24 (Oxford, U.K.: Pergamon Press, 1979).

    Google Scholar 

  21. J. Benard et al., Métallurgie Générale (Paris: Masson, 1991).

    Google Scholar 

  22. E.H. Baker, “Vapour Pressure and Thermodynamic Behaviour of Liquid Zinc-copper Alloys at 1150°C,” Transactions of the Institute of Mines and Metallurgy, Sec. C (1970), pp. 1–5.

  23. D.E. Tyler and W.T. Black, “Introduction to Copper and Copper Alloys,” Properties and Selection: Non-ferrous Alloys and Special-purpose Materials (ASM Handbook, Volume 2) (Materials Park, OM: ASM International, 1992).

    Google Scholar 

  24. J.M. Welter, personal communication (2009).

  25. H. Chen, “Effect of Additives on Carbothermic Reduction of Zinc Oxide,” Journal of Materials Science Letters, 18 (1999), pp. 1399–1400.

    Article  CAS  Google Scholar 

  26. M. Chen, “Kinetic Study on the Carbothermic Reduction of Zinc Oxide,” Scandinavian Journal of Metallurgy, 30 (2001), pp. 292–296.

    Article  Google Scholar 

  27. ASM Metals Handbook, 8th edition, vol. 8 (Materials Park, OH: ASM International, 1973).

  28. R.O. Hultgren et al., Selected Values of Thermodynamic Properties of Metals and Alloys (New York: Wiley, 1956/1963).

    Google Scholar 

  29. R. Everett et al., “The Activity of Zinc in Liquid Copper-zinc Alloys,” Acta Metallurgies, 5 (1957), pp. 281–284.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bourgarit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgarit, D., Bauchau, F. The ancient brass cementation processes revisited by extensive experimental simulation. JOM 62, 27–33 (2010). https://doi.org/10.1007/s11837-010-0045-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0045-3

Keywords

Navigation