Skip to main content
Log in

A coupled creep plasticity model for residual stress relaxation of a shot-peened nickel-based superalloy

  • High Temperature Alloys
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During component loading history, shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. In these instances, taking full credit for compressive residual stresses would result in a nonconservative life prediction. This article describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of INI 00. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain to simulate surface treatment deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Prevéy, D. Hornbach, and P. Mason, Proceedings of the 17th Heat Treating Society Conference and Exposition and the 1st International Induction Heat Treating Symposium, ed. D.L. Milam et.al. (Materials Park, OH: ASM International, 1998), pp. 3–12.

    Google Scholar 

  2. T.P. Gabbetal., TMS Lettere, 1(5) (2004), pp. 115–116.

    Google Scholar 

  3. W. Cao et al., Material Science and Technology, 10 (November 1994), pp. 947–954.

    CAS  Google Scholar 

  4. H. Holzapfel et al., Material Science and Engineering, A248 (1998), pp.9–18.

    Article  CAS  Google Scholar 

  5. P. Prevéy, Proceedings of the 20th ASM Materials Solution Conference & Exposition (Materials Park, OM: ASM International, 2000), pp. 426–434.

    Google Scholar 

  6. D.J. Buchanan, R. John, and N.E. Ashbaugh, ASTM STP 1497 — Residual Stress Effects on Fatigue and Fracture Testing and Incorporation of Results into Design (West Conshohocken, PA: ASTM, 2007), pp. 47–57.

    Book  Google Scholar 

  7. J.L. Chaboche and O. Jung, International Journal of Plasticity, 13(10) (1998), pp. 785–807.

    Article  Google Scholar 

  8. G. Schoeck, Mechanical Behavbr of Materials at Elevated Temperatures, ed. J.E. Dorn (New York: McGraw-Hill Book Company, Inc., 1961), pp. 79–107.

    Google Scholar 

  9. A.S. Nowick and E.S. Machlin, National Advisory Committee for Aeronautics (NACA), Technical Note No. 1039 (Washington, D.C.: NACA, April 1946). [NACA was dissolved on October 1,1958 and its assets transferred to the newly created National Aeronautics and Space Administration (NASA).]

    Google Scholar 

  10. J. Weertman, J. Applied Physics, 26(10) (1955), pp. 1213–1217.

    Article  CAS  ADS  Google Scholar 

  11. L.M. Kachanov, Izv. Akad. Nauk. SSR, Otd Tekh., Nauk No. 8 (1958), pp. 26–31.

  12. Y.N. Rabotnov, Creep Problems in Structural Members (New York: American Elsevier Publishing Co., 1969), p. 137.

    MATH  Google Scholar 

  13. J.L. Chaboche, J. Applied Mechanics, 55 (March 1988), pp. 59–64.

    Article  Google Scholar 

  14. J.L. Chaboche, J. Applied Mechanics, 55 (March 1988), pp. 65–72.

    Article  Google Scholar 

  15. D.R. Sanders (Ph.D. thesis, Texas A&M University, 1986).

  16. M. McLean and B.F. Dyson, J. Engineering Materials and Technology, 122 (July 2000), pp. 273–278.

    Article  CAS  Google Scholar 

  17. B.F. Dyson, J. Pressure Vessel Technology, 122 (August 2000), pp. 281–296.

    Article  CAS  Google Scholar 

  18. S.K. Sondhi, B.F. Dyson, and M. McLean, Acta Materialia, 52 (2004), pp. 1761–1772.

    Article  CAS  Google Scholar 

  19. H. Basoalto et al., Superalloys 2004, ed. K.A. Green et al. (Warrendale, PA: TMS, 2004), pp. 897–906.

    Google Scholar 

  20. S.R. Bodner, J. Applied Mechanics, Transactions of the ASME (June 1975), pp. 385–389.

  21. K. Walker, NASA Contractor Report, NASA-CR-165533 (Springfield, VA: National Technical Information Service, 1981).

    Google Scholar 

  22. V.G. Ramaswamy, NASA Contractor Report 3998 (Washington, D.C.: NASA Scientific and Technical Information Branch, 1986).

    Google Scholar 

  23. D.N. Robinson, ORNL TM-5969 (Oak Ridge, TN: U.S. Department of Energy Technical Information Center, 1978).

    Google Scholar 

  24. A.K. Miller, Trans. ASME Journal of Engineering Materials and Technology, 96 (1976), p. 97.

    Google Scholar 

  25. K. Li, N.E. Ashbaugh, and A.H. Rosenberger, Superalloys 2004, ed. K.A. Green et al. (Warrendale, PA: TMS 2004), pp. 251–258.

    Google Scholar 

  26. R.H. Dodds, Computers & Structures, 26(5) (1987), pp. 767–779.

    Article  MATH  Google Scholar 

  27. D.J. Buchanan et al., Superalloys 2008, ed. R.C. Reed et al. (Warrendale, PA: TMS 2008), pp. 965–974.

    Google Scholar 

  28. D.J. Buchanan, R. John, and R.A. Brockman, J. Engineering Materials and Technology, 131(3) (2009), 031008.

    Article  Google Scholar 

  29. D. Kirk, Proceedings of the Third International Conference on Shot Peening, ed. H. Wohlfahrt, R. Kopp, and O. Vöhringer (Mishawaka, IN: Int’l. Scientific Committee for Shot Peening, 1987), pp. 213–220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis J. Buchanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchanan, D.J., John, R., Brockman, R.A. et al. A coupled creep plasticity model for residual stress relaxation of a shot-peened nickel-based superalloy. JOM 62, 75–79 (2010). https://doi.org/10.1007/s11837-010-0016-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0016-8

Keywords

Navigation