Skip to main content

Advertisement

Log in

Laser micromachining for biomedical applications

  • Biomedical Materials and Devices
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Laser micromachining is becoming a common method for fabrication of microstructured medical devices. Developments in pulsed laser technology have made it possible to achieve precision machining of sub-micrometer features with minimal damage to the surrounding material. Several aspects of laser micromachining, including machining methods, types of lasers used in micromachining, and laser-material interaction, are discussed in this article. Biomedical applications of laser micromachining are also reviewed. The ablation behavior of silicon was examined as a function of laser energy, aperture, and repetition rate. In vitro studies showed that microscale grooves on silicon substrates may be used to orient human aortic vascular smooth muscle cells. We anticipate that the use of laser micromachining for modifying medical and dental devices will become more significant over the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.B. Dahotre and S.P. Harimkar, Laser Fabrication and Machining of Materials (New York: Springer, 2008), pp. 247–287.

    Google Scholar 

  2. X. Liu, D. Du, and G. Mourou, IEEE Journal of Quantum Electronics, 33(10) (1997), pp. 1706–1716.

    Article  ADS  CAS  Google Scholar 

  3. U. Keller, Nature, 424(6950) (2003), pp. 831–838.

    Article  PubMed  ADS  CAS  Google Scholar 

  4. R.R. Gattass and E. Mazur, Nature Photonics, 2(4) (2008), pp. 219–225.

    Article  ADS  CAS  Google Scholar 

  5. C.G.K. Malek, Analytical and Bioanalytical Chemistry, 385(8) (2006), pp. 1362–1369.

    Article  Google Scholar 

  6. A. Chimmalgi et al., Applied Physics Letters, 82(8) (2003), pp. 1146–1148.

    Article  ADS  CAS  Google Scholar 

  7. A.P. Joglekar et al., Applied Physics B-Lasers and Optics, 77(1) (2003), pp. 25–30.

    Article  CAS  Google Scholar 

  8. M.S. Amer et al., Applied Surface Science, 187(3–4) (2002), pp. 291–296.

    Article  ADS  CAS  Google Scholar 

  9. M.S. Amer et al., Applied Surface Science, 242(1–2) (2005), pp. 162–167.

    Article  ADS  CAS  Google Scholar 

  10. Y. Haga et al., Minimally Invasive Therapy & Allied Technologies, 15(4) (2006), pp. 218–225.

    Article  Google Scholar 

  11. G. Ogura and R. Hack, Medical Device and & Diagnostic Industry (2006), www.resonetics.com/pdfs/MDDI_Micromachining.pdf.

  12. A. Doralswamy, Ph.D. Thesis, University of North Carolina (2007).

  13. A. Doralswamy et. al., Applied Surface Science, 252(13) (2006), pp. 4748–4753.

    Article  ADS  Google Scholar 

  14. T. Patz et al., Materials Science and Engineering B, 123(3) (2005), pp. 242–247.

    Article  Google Scholar 

  15. Medical Design, ed. P. Dvorak (New York: Penton Media, Inc., 2008), medicaldesign.com/contractmanufacturing/ideas_lasers_build_1008/.

    Google Scholar 

  16. Y.P. Kathuria, Journal of Materials Processing Technology, 170 (2005), pp. 545–550.

    Article  CAS  Google Scholar 

  17. M.C. Gower, Optics Express, 7(2) (2000), pp. 56–67.

    Article  PubMed  ADS  CAS  Google Scholar 

  18. S. Kaihara et al., Tissue Engineering, 6 (2000), pp. 105–117.

    Article  PubMed  CAS  Google Scholar 

  19. S. Mwenifumbo et al., Journal of Materials Science: Materials in Medicine, 18 (2007), pp. 9–23.

    Article  PubMed  CAS  Google Scholar 

  20. A.Y. Fasai et al., Materials Science and Engineering C, 29 (2009), pp. 5–13.

    Article  Google Scholar 

  21. R. Osellame et al., Applied Physics Letters, 90(23) (2007), p. 231118.

    Article  ADS  Google Scholar 

  22. H. Klank, J.P. Kutter, and O. Geschke, Lab on a Chip, 2(4) (2002), pp. 242–246.

    Article  PubMed  CAS  Google Scholar 

  23. C.G.K. Malek, Analytical and Bioanalytical Chemistry, 385(8) (2006), pp. 1351–1361.

    Article  Google Scholar 

  24. M. Masuda et al., Applied Physics A-Materials Science & Processing, 76(5) (2003), pp. 857–860.

    Article  ADS  CAS  Google Scholar 

  25. Y. Cheng, K. Sugioka, and K. Midorikawa, 29(17) (2004), pp. 2007–2009.

  26. K. Sugioka, Y. Cheng, and K. Midorikawa, Applied Physics A-Materials Science & Processing, 81(1) (2005), pp. 1–10.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Narayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, P.R., Aggarwal, R., Doraiswamy, A. et al. Laser micromachining for biomedical applications. JOM 61, 35–40 (2009). https://doi.org/10.1007/s11837-009-0130-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0130-7

Keywords

Navigation