Skip to main content

Advertisement

Log in

Polymeric biomaterials for load-bearing medical devices

  • Biomedical Materials and Devices
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This paper aims to give a broad overview of the challenges that are faced in load-bearing medical devices and focuses specifically on the challenges faced in utilizing polymeric materials in such applications. Three specific cases are given in the field of polymeric biomaterials. These cases build in complexity and initiate with examination of the evolution of intravascular catheter design in which the materials, properties, and processing have been optimized to develop a system that can be used in an angioplasty procedure with little concern of clinical failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.I. Kroschwitz, editor, Polymers: Biomaterials and Medical Applications (New York: Wiley, 1989).

    Google Scholar 

  2. J. Black, Biological Performance of Materials: Fundamentals of Biocompatibility (New York: Marcel Dekker, 1999).

    Google Scholar 

  3. J.B. Park and J.D. Bronzino, Biomaterials: Principals and Applications (Boca Raton, FL: CRC Press, 2003).

    Google Scholar 

  4. B.D. Ratner et al., Biomaterials Science: An Introduction to Materials in Medicine (New York: Academic Press, 1996).

    Google Scholar 

  5. J.B. Park and R.S. Lakes, Biomaterials: An Intro Introduction (New York: Plenum Press, 1992).

    Google Scholar 

  6. D.W. Howie et al., Clin. Orthop. (1993), N. AM. 24:4 571–581.

  7. H.-G. Willert and M. Semlitsch, J. Biomed. Materials Res., 11 (1977), p. 157.

    Article  CAS  Google Scholar 

  8. J.L. Gilbert, C.A. Buckley, and J.J. Jacobs, J. Biomed. Res., 27(12) (1994), pp. 1533–1544.

    Article  Google Scholar 

  9. R.J. Young and P.A. Lovell, Introduction to Polymers (London: CRC Press, 1990).

    Google Scholar 

  10. A.H. Matsumoto et al., Cardiovasc. Intervent. Radiol., 16 (1993), p. 135.

    Article  PubMed  CAS  Google Scholar 

  11. C.A. Fontirroche and S. Querns, U.S. patent 5, 820,594 (1998).

  12. S. Gad, Safety Evaluation of Medical Devices (New York: CRC, 2001), pp. 505–536.

    Google Scholar 

  13. S. Bondurant, V.L. Ernster, and R. Herdman, Safety of Silicone Breast Implants (Washington, D.C.: Institute of Medicine National Academy Press, 1999), pp. 253–254.

    Google Scholar 

  14. D.A. Kessler, New Engl. J. Med., 326 (1992), pp. 1713–1715.

    Article  PubMed  CAS  Google Scholar 

  15. L.R. Holmich et al., Plastic and Reconstructive Surgery, 120(7) (2007), pp. 62S–69S.

    Article  PubMed  CAS  Google Scholar 

  16. “Mentor MemoryGel™ Silicone Gel-Filled Breast Implants Product Insert Data Sheet” Physician Labeling Document (Silver Spring, MD: Food and Drug Administration, 2006)

  17. “NIH Consensus Development Conference on Total Knee Replacement” (Bethesda, MD: National Institutes of Health), http://consensus.nih.gov/2003/2003TotalKneeReplacement117html.htm.

  18. Total Hip Replacement, NIH Consensus Statement, 12(5) (1994), pp. 1–31.

  19. H.G. Willert, J. Biomed. Mater. Res., 11(2) (1977), pp. 157–164.

    Article  PubMed  CAS  Google Scholar 

  20. D.W. Howie, J. Arthroplasty, 5(4) (1990), pp. 337–348.

    Article  PubMed  CAS  Google Scholar 

  21. D.O. O’Connor et al., Transactions of 44th Annual Meeting of the Orthopaedic Research Society (Rosemont, IL: Orthopaedic Research Society, 1999), p. 816.

    Google Scholar 

  22. D.A. Baker, A. Bellare, and L. Pruitt, J. Biomedical Materials Research, 66A (2003), pp. 146–154.

    Article  CAS  Google Scholar 

  23. S.S. Tower et al., J. Bone Joint Surg. Am., 10 (2007), pp. 2212–2217.

    Article  Google Scholar 

  24. J. Furmanski et al., “Catastrophic Rim Fracture of Four Highly Cross-linked Acetabular Liners” (Paper presented at the Annual Meeting of the Am. Acad. Ortho. Surg., 2008).

  25. W.Y. Shon et al., J. Arthroplasty, 4 (2005), pp. 427–435.

    Article  Google Scholar 

  26. J. Furmanski et al., “In vivo Crack Initiation in Retrieved Cross-linked UHMWPE Acetabular Liners,” Transactions of the 55th Annual Meeting of the Orthopaedic Research Society (Rosemont, IL: Orthopaedic Research Society, 2009).

    Google Scholar 

  27. J. Furmanski, C.M. Rimnac, and L.A. Pruitt, “Brittle Fatigue Crack Propagation of UHMWPE and Its Implications for Total Joint Replacements” (Paper presented at the 14th International Conference on Deformation, Yield and Fracture of Polymers, Kerkrade, The Netherlands, 2009).

  28. J. Furmanski, E. Feest, and L.A. Pruitt, “Static Mode Fatigue of UHMWPE” (Paper presented at the 2nd International Congress on the Mechanics of Biomaterials and Tissues, Kauai, HI, 2007).

  29. J.G. Williams, Fracture Mechanics of Polymers (Chichester, U.K.: Ellis Horwood Ltd., 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Pruitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pruitt, L., Furmanski, J. Polymeric biomaterials for load-bearing medical devices. JOM 61, 14–20 (2009). https://doi.org/10.1007/s11837-009-0126-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0126-3

Keywords

Navigation