Skip to main content

Polymeric Biomaterials

  • Chapter
  • First Online:
Biomedical Materials

Abstract

Synthetic and natural polymers have been used in medicine for over 70 years in a range of applications that increase over the years. Uses range from disposable single-use medical supplies to implants such as shunts and artificial heart. Most stable polymers are common polymers that have been adopted to medical uses, after modification to guarantee safety and functionality. Biodegradable polymers have been tailored for in-body medical uses such as absorbable sutures, temporary orthopedic plates, and drug delivery carriers. This chapter provides an overview of the various polymers used in medicine along with their chemical structure, properties, and medical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brandup J, Immergut EH. Polymer handbook. New York: A Wiley-Interscience; 1989.

    Google Scholar 

  2. Halpern BD, Tong YC. Medical applications. In: Kroschwitz JI, editor. Polymers: biomaterials and medical applications. New York: John Wiley and Sons; 1989.

    Google Scholar 

  3. Cast DG, Ratner BD. Biomedical surface science: foundations to frontier. Surf Sci. 2002;500:28–60.

    Article  Google Scholar 

  4. Migliaresi C, Pegoretti A. Fundamentals of polymeric composite materials. In: Barbucci R, editor. Integrated biomaterials science. New York: Kluwer Academic; 2002.

    Google Scholar 

  5. El-zaim HS, Heggers JP. Silicones for pharmaceutical and biomedical applications. In: Dumitriu S, editor. Polymeric and biomaterials. 2nd ed. New York: Marcel Dekker, Inc; 2002.

    Google Scholar 

  6. Cook RR, Harrison MC, Levier RR. Arthritis Rheum. 1994;37:153.

    Article  CAS  Google Scholar 

  7. Subramaniam A, Sethuraman S. Biomedical applications of nondegradable polymers. In: Kumbar S, Deng M, editors. Natural and synthetic biomedical polymers. Boston: Elsevier Inc; 2014. p. 301–8.

    Chapter  Google Scholar 

  8. Dick B, Greiner K, Magdowski G, Pfeiffer N. Long term stability of heparin coated PMMA intraocular lenses: results of an in vivo study. Ophthalmologe. 1997;94:920–4.

    Article  CAS  Google Scholar 

  9. Wei M, Gao Y, Li X, Serpe MJ. Stimuli-responsive polymers and their applications. Polym Chem. 2017;8:127–43.

    Article  CAS  Google Scholar 

  10. Nath S, Bodhak S, Basu B. HDPE-Al2O3-Hap composites for biomedical applications: processing and characterizations. J Biomed Mater Res B Appl Biomater. 2009;88B:1–11.

    Article  CAS  Google Scholar 

  11. Liu Y, Wang M. Fabrication and characteristics of hydroxyapatite reinforced polypropylene as a bone analogue biomaterial. J Appl Polym Sci. 2007;106:2780–90.

    Article  CAS  Google Scholar 

  12. Goodson JM. Life on a string: development of the tetracycline fiber delivery system, Technol. Health Care. 1996;4:269–82.

    CAS  Google Scholar 

  13. Varaprasad K, Sadiku ER, Ramam K, Jayaramudu J, Siva Mohan Reddy G. Significances of nanostructured hydrogels for valuable applications. In: Thomas S, Shanks R, Chandran S, editors. Nanostructured polymer blends. Cambridge: Elsevier Science; 2014. p. 273–98.

    Chapter  Google Scholar 

  14. Ebewele RO. Polymer science and technology. Boca Raton: CRC; 2000.

    Book  Google Scholar 

  15. Janik H, Sienkiewicz M, Kucinska-Lipka J. Polyurethanes. In: Dodiuk H, Goodman S, editors. Handbook of thermoset plastics. 3rd ed. Amsterdam: Elsevier Science; 2013. p. 253–95.

    Google Scholar 

  16. Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol. 2004;64:789–817.

    Article  CAS  Google Scholar 

  17. Chlupac J, Filova E, Bacakova L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res. 2009;58:S119–39.

    Article  Google Scholar 

  18. Farah S, Kunduru KR, Basu A, Domb AJ. Molecular weight determination of polyethylene terephthalate. In: Liang M, editor. Poly(ethylene terephthalate) based blends, composites and nanocomposites. Oxford: Elsevier Inc.; 2015. p. 143–65.

    Chapter  Google Scholar 

  19. Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. React Funct Polym. 2020;148:104501.

    Article  CAS  Google Scholar 

  20. Roberts IV, Bukhary D, Valdivieso CYL, Tirelli N. Fibrin matrices as (injectable) biomaterials: formation, clinical use, and molecular engineering. Macromol Biosci. 2020;20(1):1900283.

    Article  CAS  Google Scholar 

  21. Barbon S, Stocco E, Macchi V, Contran M, Porzionato A, De Caro R, Barbon S, et al. Platelet-Rich Fibrin Scaffolds for cartilage and tendon regenerative medicine: from bench to bedside. Int J Mol Sci. 2019;20(7):1701.

    Article  CAS  Google Scholar 

  22. Nihouannen DL, Guehennec LL, Rouillon T, Pilet P, Bilban M, Layrolle P, Daculsi G. Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering. Biomaterials. 2006;27:2716–22.

    Article  CAS  Google Scholar 

  23. Tang X, Thankappan SK, Lee P, Fard SE, Harmon MD, Tran K, Yu X. Polymeric biomaterials in tissue engineering and regenerative medicine. In: Kumbar S, Laurencin C, Deng M, editors. Natural and synthetic biomedical polymers. Boston: Elsevier Inc; 2014. p. 351–71.

    Chapter  Google Scholar 

  24. Aravamudhan A, Ramos DM, Nada AA, Kumbar SG. Natural polymers: polysaccharides and their derivatives for biomedical applications. In: Kumbar S, Deng M, editors. Natural and synthetic biomedical polymers. Boston: Elsevier Inc; 2014. p. 67–89.

    Chapter  Google Scholar 

  25. Czaja WK, Young DJ, Kawecki M, Brown RM. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules. 2007;8:1–12.

    Article  CAS  Google Scholar 

  26. Bajpai SK, Mary G, Chand N. The use of cotton fibers as reinforcements in composites. In: Sain M, Faruk O, editors. Biofiber reinforcements in composite materials. Amsterdam: Elsevier Inc; 2015. p. 320–41.

    Chapter  Google Scholar 

  27. Tabujew I, Peneva K. Functionalization of cationicpolymers for drug delivery applications. In: Samal SK, Dubrue LP, editors. Cationic polymers in regenerative medicine, RSC polymer chemistry series no. 13. London: The Royal Society of Chemistry; 2015. p. 1–29.

    Google Scholar 

  28. Khan F, Tanaka M, Ahmad SR. Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. J Mater Chem B. 2015;3:8224–49.

    Article  CAS  Google Scholar 

  29. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26:433–41.

    Article  CAS  Google Scholar 

  30. Zhang Z, Ortiz O, Goyal R, Kohn J. Biodegradable polymers. In: Lanza R, Vacanti J, Langer R, editors. Principles of tissue engineering. Amsterdam: Elsevier Inc; 2014. p. 441–73.

    Chapter  Google Scholar 

  31. Hu S, Jou C, Yang M. Protein adsorption, fibroblast activity and antibacterial properties of poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid. Biomaterials. 2003;24:2685–93.

    Article  CAS  Google Scholar 

  32. Mhurchu CN, Dunshea-Mooij C, Bennett D, Rodgers A. Effect of chitosan on weight loss in overweight and obese individuals: a systematic review of randomized controlled trials. Obes Rev. 2005;6:35–42.

    Article  CAS  Google Scholar 

  33. Azzam T, Eliyahu H, Makovitzki A, Linial M, Domb AJ. J Control Release. 2004;96:309–23.

    Article  CAS  Google Scholar 

  34. Sinko PJ, Singh Y. Martin’s physcical pharmacy and pharmaceutical sciences: physical chemical and biopharmaceutical principles in the pharmaceutical sciences. Philadelphia: Lippincott Williams & Wilkins, Wolters Kluwer; 2011. p. 492–515.

    Google Scholar 

  35. Ashiuchi M, Misono H. Biopolymers online. Weinheim: Wiley-VCH Verlag GmbH and Co. KGaA; 2005.

    Google Scholar 

  36. Torchilin VP. Polymeric contrast agents for medical imaging. Curr Pharm Biotechnol. 2000;1:183–215.

    Article  CAS  Google Scholar 

  37. Jiang L, Zhang J. Biodegradable polymers and polymer blends. In: Ebnesajjad S, editor. Handbook of biopolymers and biodegradable plastics. Whaltam: Elsevier Inc; 2013. p. 109–28.

    Chapter  Google Scholar 

  38. Jiang L, Zhang J. Biodegradable and biobased polymers. In: Kutz M, editor. Applied plastics engineering handbook. Oxford: Elsevier Inc; 2011. p. 145–58.

    Chapter  Google Scholar 

  39. Ringdorf H. Macromelecular reviews. J Polym Sci. 1975;10:1–230.

    Google Scholar 

  40. Carmali S, Brocchini S. Polyacetals. In: Kumbar S, Deng M, editors. Natural and synthetic biomedical polymers. Amsterdam: Elsevier Inc; 2014. p. 219–33.

    Chapter  Google Scholar 

  41. Verma S, Garkhal K, Mittal A, Kumar N. Biodegradable polymers. In: Domb A, editor. Clinical use and clinical development. Hoboken: John Wiley and Sons, Inc; 2011. p. 565–629.

    Google Scholar 

  42. Kunduru KR, Basu A, Domb AJ. Biodegradable polymers: medical applications, encyclopedia of polymer science and technology. Hoboken: John Wiley & Sons, Inc.; 2016.

    Google Scholar 

  43. Alzamora SM, Salvatori D, Tapia MS, Loapez-Malo A, Welti-Chanes J, Fito P. Novel functional foods from vegetable matrices impregnated with biologically active compounds. J Food Eng. 2005;67:205–14.

    Article  Google Scholar 

  44. Imam SH, Glenn GM, Chiellini E. Utilization of biobased polymers in food packaging: assessment of materials, production and commercialization. In: Emerging food packaging technologies principles and practice. Cambridge: Woodhead Publishing Limited; 2012. p. 435–68.

    Chapter  Google Scholar 

  45. Loapez-Rubio A. Bioactive food packaging strategies. London: Woodhead Publishing Limited, Elsevier Inc; 2011. p. 460–82.

    Google Scholar 

  46. Heller J. Polyortho esters. In: Domb AJ, Kost J, Wiseman DM, editors. Handbook of biodegradable polymers. Amsterdam: Harwood Academic; 1997.

    Google Scholar 

  47. Legrend DG, Bendler T. Handbook of polycarbonate science and technology. New York: Marcel Dekker; 2000.

    Google Scholar 

  48. Domb AJ, Elmalak O, Shastri VR, Ta-Shma Z, Masters DM, Ringer I, Teomin D, Langer R. Biodegradable phosphazenes for biomedical applications. In: Domb AJ, Kost J, Wiseman DM, editors. Handbook of biodegradable polymers. Amsterdam: Harwood Academic Publishers; 1997.

    Google Scholar 

  49. Basu A, Domb AJ. Recent advances in polyanhydride based biomaterials. Adv Mater. 2018;30:1706815.

    Article  CAS  Google Scholar 

  50. Vandorpe J, Schacht E, Dejardin S, Lemmouchi Y. In: Domb AJ, Kost J, Wiseman DM, editors. Handbook of biodegradable polymers. Amsterdam: Harwood; 1997.

    Google Scholar 

  51. Deng M, Kumbar SG, Wan Y, Toti US, Allcock HR, Laurencin CT. Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications. Soft Matter. 2010;6:3119–32.

    Article  CAS  Google Scholar 

  52. James R, Deng M, Kumbar SG, Laurencin CT. Polyphosphazenes. In: Sand K, Deng M, editors. Natural and synthetic biomedical polymers. Amsterdam: Elsevier Inc; 2014. p. 193–206.

    Chapter  Google Scholar 

  53. Ikada Y. Interfacial biocompatibility. In: Shalaby SW, Ikada Y, Langer R, Williams J, editors. Polymers of biological and biomedical significances. Washington DC: American Chemical Society; 1994.

    Google Scholar 

  54. Williams DF. Biofunctionality and biocompatibility. In: Cahn RW, Haasen P, Kramer EJ, editors. Materials science and technology. New York: VCH publishings; 1992.

    Google Scholar 

  55. Klee D, Hocker H. Biomedical applications polymer blends. Adv Polym Sci. 1999;149:1.

    Article  CAS  Google Scholar 

  56. Lyman D. Characterization of biomaterials. In: Barbucci R, editor. Integrated biomaterials science. Kluwer Academic: New York; 2002.

    Google Scholar 

  57. Anderson JM, Kottke-Marchant K. Platelet interactions with biomaterials. CRC Crit Rev Biocompat. 1985;1:111–20.

    CAS  Google Scholar 

  58. Kariduraganavar MY, Kittur AA, Kamble RR. Polymer synthesis and processing. In: Kumbar S, Deng M, editors. Natural and synthetic biomedical polymers. Burlington: Elsevier Inc; 2014. p. 1–31.

    Google Scholar 

  59. Carvalho AJF. Starch: major sources, properties and applications as thermoplastic materials. In: Belgacem MN, Gandini A, editors. Monomers, polymers and composites from renewable resources. Amsterdam: Elsevier Science; 2008. p. 321–42.

    Chapter  Google Scholar 

  60. Maliger RB, Halley PJ. Reactive extrusion for thermoplastic starch-polymer blends. In: Halley P, Averous L, editors. Starch polymers: from genetic engineering to green applications. Amsterdam: Elsevier Inc; 2014. p. 291–317.

    Chapter  Google Scholar 

  61. O’Brien S, Wang YJ. Effects of shear and pH on starch phosphates prepared by reactive extrusion as a sustained release agent. Carbohydr Polym. 2009;77:464–71.

    Article  CAS  Google Scholar 

  62. O’Brien S, Wang YJ, Vervaet C, Remon JP. Starch phosphates prepared by reactive extrusion as a sustained release agent. Carbohydr Polym. 2009;76:557–66.

    Article  CAS  Google Scholar 

  63. Zhang L, Zeng M. Proteins as sources of materials. In: Belgacem MN, Gandini A, editors. Monomers, polymers and composites from renewable resources. Amsterdam: Elsevier Science; 2008. p. 479–93.

    Chapter  Google Scholar 

  64. Pahernik SA, Thasler WE, Doser M, Gomez-Lechon MJ, Castell MJ, Planck H, Koebe HG. Cells Tissues Organs. 2001;168:170–7.

    Article  CAS  Google Scholar 

  65. He W, Benson R. Polymeric biomaterials. In: Kutz M, editor. Applied plastics engineering handbook. Amsterdam: Elsevier Inc; 2011. p. 159–75.

    Chapter  Google Scholar 

  66. Ashammakhi N, Rokkanen P. Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials. 1997;18:3–9.

    Article  CAS  Google Scholar 

  67. Janik H, Vancso J. The influence of hard segment crosslinking on the morphology and mechanical properties of segmented poly(ester-urethanes). Polimery. 2005;50:139–42.

    Article  CAS  Google Scholar 

  68. Eameema M, Duvvuri LS, Khan W, Domb AJ. Polyanhydrides. In: Kumbar S, Deng M, editors. Natural and synthetic biomedical polymers. Amsterdam: Elsevier Inc; 2014. p. 181–92.

    Chapter  Google Scholar 

  69. Li JX, He AH, Fang DF, Hsiao BS, Chu B. Electrospinning of hyaluronic acid (HA) and HA/gelatin blends. Macromol Rapid Commun. 2006;27:114–20.

    Article  CAS  Google Scholar 

  70. Martins A, Chung S, Pedro AJ, Sousa RA, Marques AP, Reis RL, Neves NMJ. Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. J Tissue Eng Regen Med. 2009;3:37–42.

    Article  CAS  Google Scholar 

  71. Kenawy ER, Abdel-Hay FI, El-Newehy MH, Wnek GE. Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater Chem Phys. 2009;113:296–302.

    Article  CAS  Google Scholar 

  72. Fernandez-Saiz P, Lagaroan JM, Ocio MJ. Optimization of the film-forming and storage conditions of chitosan as an antimicrobial agent. J Agric Food Chem. 2009;57:3298–307.

    Article  CAS  Google Scholar 

  73. Torres-Giner S, Ocio MJ, Lagaroan JM. Development of active antimicrobial fiber based chitosan polysaccharide nanostructures using electrospinning. Eng Life Sci. 2008;8:303–14.

    Article  CAS  Google Scholar 

  74. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrost. 1995;35:151–60.

    Article  CAS  Google Scholar 

  75. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3:232–8.

    Article  CAS  Google Scholar 

  76. Huang ZM, Zhang YZ, Ramakrishna S, Lim CT. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer. 2004;45:5361–8.

    Article  CAS  Google Scholar 

  77. Butchera AL, Koha CT, Oyen ML. Systematic mechanical evaluation of electrospun gelatin meshes. J Mech Behav Biomed Mater. 2017;69:412–9.

    Article  CAS  Google Scholar 

  78. Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H. Electrospinning of chitosan. Macromol Rapid Commun. 2004;25:1600–5.

    Article  CAS  Google Scholar 

  79. Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–10.

    Article  CAS  Google Scholar 

  80. Boland ED, Wnek G, Simpson DG, Pawlowski KJ, Bowlin GL. Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning. J Macromol Sci Pure Appl Chem. 2001;A38:1231–43.

    Article  CAS  Google Scholar 

  81. You Y, Lee SJ, Min BM, Park WH. Effect of solution properties on nanofibrous structures of electrospun poly(lactic-co-glycolic acid). J Appl Polym Sci. 2005;99:1214–21.

    Article  CAS  Google Scholar 

  82. Baker SR, Banerjee S, Bonin K, Guthold M. Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Mater Sci Eng C. 2016;59:203–12.

    Article  CAS  Google Scholar 

  83. Mitsoulis E. Calendering of polymers. In: Thomas S, Weimin Y, editors. Advances in polymer processing from macro to nano scales. New York: Woodhead publishing Ltd, CRC Press; 2009. p. 311–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham J. Domb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madhumanchi, S., Srichana, T., Domb, A.J. (2021). Polymeric Biomaterials. In: Narayan, R. (eds) Biomedical Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-49206-9_2

Download citation

Publish with us

Policies and ethics