Skip to main content

Advertisement

Log in

Carbon nanotube electron source technology

  • Overview
  • Nanomaterials for Electronic Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The carbon nanotube embodies a unique combination of properties which make it potentially an extraordinary field emission electron source. These properties include small tip radii (and small source size), high electrical conductivity, high melting point, and resistance to electromigration under an applied electric field. Here, carbon nanotube electron point sources are shown to be remarkably stable, with high brightness, low energy spread, and low noise. These are favorable attributes of an electron source to be used in an electron-optical system. By combining wafer-scale carbon nanotube growth technology with microfabrication techniques, it is possible to mass produce high-performance emitter arrays that can deliver high current beams at high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.S. Baker, A.R. Osborn, and J. Williams, Nature, 239 (1972), p. 96.

    Article  ADS  CAS  Google Scholar 

  2. S. Ijima, Nature, 354 (1991), p. 56.

    Article  ADS  Google Scholar 

  3. T. Utsumi, IEEE Trans. Electron Dev., 38 (1001), p. 2276.

    Article  Google Scholar 

  4. S.T. Purcell et al., Phys. Rev. Lett., 88 (2002), p. 105502.

    Article  PubMed  ADS  CAS  Google Scholar 

  5. N. de Jonge, Y. Lamy, and M. Kaiser, Nano Lett., 3 (2003), p. 1621.

    Article  Google Scholar 

  6. M. Mann, K.B.K. Teo, and W.I. Milne, NANO: Brief Reports and Reviews, 1 (2006), p. 35.

    CAS  Google Scholar 

  7. L. Gangloff et al., Nano Lett., 4 (2004), p. 1575.

    Article  CAS  Google Scholar 

  8. K.A. Dean and B.R. Chalamala, Appl. Phys. Lett., 76 (2001), p. 375.

    Article  ADS  Google Scholar 

  9. V. Semet et al., Appl. Phys. Lett., 81 (2002), p. 343.

    Article  ADS  CAS  Google Scholar 

  10. N. de Jonge et al., Appl. Phys. Lett., 85 (2004), p. 1607.

    Article  ADS  Google Scholar 

  11. N. de Jonge et al., Appl. Phys. Lett., 87 (2005), p. 133118.

    Article  Google Scholar 

  12. N. de Jonge et al., Adv. Mater., 17 (2005), p. 451.

    Article  Google Scholar 

  13. W.I. Milne et al., Diamond and Related Materials, 12 (2004), p. 422.

    Article  Google Scholar 

  14. E. Minoux et al., Nano Lett., 5 (2005), p. 2135.

    Article  PubMed  CAS  Google Scholar 

  15. R. Martel et al., Phys. Rev. Lett., 87 (2001), p. 256805.

    Article  PubMed  ADS  CAS  Google Scholar 

  16. K.B.K. Teo et al., Nature, 437 (2005), p. 968.

    Article  PubMed  ADS  CAS  Google Scholar 

  17. G.Z. Yue et al., Appl. Phys. Lett., 81 (2002), p. 355.

    Article  ADS  CAS  Google Scholar 

  18. W.B. Choi et al., Appl. Phys. Lett., 75 (1999), p. 3129.

    Article  ADS  CAS  Google Scholar 

  19. W.B. Choi et al., Appl. Phys. Lett., 78 (2001), p. 1547.

    Article  ADS  CAS  Google Scholar 

  20. L. Nilsson et al., Appl. Phys. Lett., 76 (2000), p. 2071.

    Article  ADS  CAS  Google Scholar 

  21. G. Pirio et al., Nanotechnology, 13 (2001), p. 1.

    Article  ADS  Google Scholar 

  22. K.B.K. Teo et al., Journal of Vacuum Science and Technology B, 21 (2003), p. 693.

    Article  CAS  Google Scholar 

  23. Z.F. Ren et al., Science, 282 (1998), p. 1105.

    Article  ADS  CAS  Google Scholar 

  24. M. Chhowalla et al., Journal of Applied Physics, 90 (2001), p. 5308.

    Article  ADS  CAS  Google Scholar 

  25. K.B.K. Teo et al., Journal of Vacuum Science and Technology B, 20 (2002), p. 116.

    Article  ADS  CAS  Google Scholar 

  26. K.B.K. Teo et al., Nanotechnology, 14 (2003), p. 204.

    Article  ADS  CAS  Google Scholar 

  27. S.M.C. Vieira et al., Appl. Phys. Lett., 89 (2006), p. 022111.

    Article  Google Scholar 

  28. See “Black Magic” by Nanoinstruments (115c Milton Road, Cambridge, CB4 1XE, U.K.), www.nanoinst. com.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author’s Note: This article is intended to be an overview of carbon nanotube electron source technology, concentrating on results by the author and his collaborators. It is not intended to be a full review of the field.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teo, K. Carbon nanotube electron source technology. JOM 59, 29–32 (2007). https://doi.org/10.1007/s11837-007-0035-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-007-0035-2

Keywords

Navigation