Skip to main content
Log in

Thermoplastic Micro-Forming of Bulk Metallic Glasses: A Review

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Bulk metallic glasses are a fascinating class of metallic alloys with an isotropic amorphous structure that is rapidly quenched from liquid melts. The absence of a crystalline micro-structure endows them with a portfolio of properties such as high strength, high elasticity, and excellent corrosion resistance. Whereas the limited plasticity and hence poor workability at ambient temperature impede the structural application of bulk metallic glasses, the unique superplasticity within the supercooled liquid region opens an alternative window of so-called thermoplastic forming, which allows precise and versatile net-shaping of complex geometries on length scales ranging from nanometers to centimeters that were previously unachievable with conventional crystalline metal processing. Thermoplastic forming not only breaks through the bottleneck of the manufacture of bulk metallic glasses at ambient temperature but also offers an alluring prospect in micro-engineering applications. This paper comprehensively reviews some pivotal aspects of bulk metallic glasses during thermoplastic micro-forming, including an in-depth understanding of the crystallization kinetics of bulk metallic glasses and the thermoplastic processing time window, the thermoplastic forming map that clarifies the relationship between the flow characteristics and the formability, the interfacial friction in micro-forming and novel forming methods to improve the formability, and the potential applications of the hot-embossed micro-patterns/components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. W. Klement, R.H. Willens, and P. Duwez, Nature 187, 869–870 (1960).

    Article  Google Scholar 

  2. J. Schroers, Adv. Mater. 22, 1566–1597 (2010).

    Article  Google Scholar 

  3. H.S. Chen, Acta Metall. 22, 1505–1511 (1974).

    Article  Google Scholar 

  4. A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans., JIM 30, 965–972 (1989).

    Article  Google Scholar 

  5. A. Inoue, A. Kato, T. Zhang, S.G. Kim, and T. Masumoto, Mater. Trans., JIM 32, 609–616 (1991).

    Article  Google Scholar 

  6. T. Zhang, A. Inoue, and T. Masumoto, Mater. Trans., JIM 32, 1005–1010 (1991).

    Article  Google Scholar 

  7. X.H. Lin and W.L. Johnson, J. Appl. Phys. 78, 6514–6519 (1995).

    Article  Google Scholar 

  8. G. Wilde, G.P. Gorler, R. Willnecker, and G. Dietz, Appl. Phys. Lett. 65, 397–399 (1997).

    Article  Google Scholar 

  9. A. Peker and W.L. Johnson, Appl. Phys. Lett. 63, 2342–2344 (1993).

    Article  Google Scholar 

  10. N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y. Zeng, and A. Inoue, Intermetallics 30, 19–24 (2012).

    Article  Google Scholar 

  11. W.H. Wang, C. Dong, and C.H. Shek, Mater. Sci. Eng., R 44, 45–89 (2004).

    Article  Google Scholar 

  12. A.L. Greer and E. Ma, MRS Bull. 32, 611–615 (2007).

    Article  Google Scholar 

  13. W.H. Wang, Prog. Mater Sci. 52, 540–596 (2007).

    Article  Google Scholar 

  14. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Acta Mater. 55, 4067–4109 (2007).

    Article  Google Scholar 

  15. Y.H. Liu, G. Wang, R.J. Wang, M.X. Pan, and W.H. Wang, Science 315, 1385–1388 (2007).

    Article  Google Scholar 

  16. M.W. Chen, Annu. Rev. Mater. Res. 38, 445–469 (2008).

    Article  Google Scholar 

  17. Y. Yokoyama, K. Fujita, A.R. Yavari, and A. Inoue, Philo. Mag. Lett. 89, 322–334 (2009).

    Article  Google Scholar 

  18. Q. Wang, Y. Yang, H. Jiang, C.T. Liu, H.H. Ruan, and J. Lu, Sci. Rep. 4, 4757 (2014).

    Google Scholar 

  19. S.F. Guo, J.L. Qiu, P. Yu, S.H. Xie, and W. Chen, Appl. Phys. Lett. 105, 161901 (2014).

    Article  Google Scholar 

  20. Z.F. Zhang, J. Eckert, and L. Schultz, Acta Mater. 51, 1167–1179 (2003).

    Article  Google Scholar 

  21. F.F. Wu, K.C. Chan, S.S. Jiang, S.H. Chen, and G. Wang, Sci. Rep. 4, 5302 (2014).

    Google Scholar 

  22. H. Guo, P.F. Yan, Y.B. Wang, J. Tan, Z.F. Zhang, M.L. Sui, and E. Ma, Nature Mater. 6, 735–739 (2007).

    Article  Google Scholar 

  23. Q.S. Deng, Y.Q. Cheng, Y.H. Yue, L. Zhang, Z. Zhang, X.D. Han, and E. Ma, Acta Mater. 59, 6511–6518 (2011).

    Article  Google Scholar 

  24. D. Jang and J.R. Greer, Nat. Mater. 9, 215–219 (2010).

    Google Scholar 

  25. C.A. Volkert, A. Donohue, and F. Spaepen, J. Appl. Phys. 103, 083539 (2008).

    Article  Google Scholar 

  26. G. Kumar, A. Desai, and J. Schroers, Adv. Mater. 23, 461–476 (2011).

    Article  Google Scholar 

  27. W.H. Wang, Adv. Mater. 21, 4524–4544 (2009).

    Article  Google Scholar 

  28. W. Chen, Z. Liu, H.M. Robinson, and J. Schroers, Acta Mater. 73, 259–274 (2014).

    Article  Google Scholar 

  29. W. Chen, Z. Liu, and J. Schroers, Acta Mater. 62, 49–57 (2014).

    Article  Google Scholar 

  30. Y. Kawamura, H. Kato, A. Inoue, and T. Masumoto, Appl. Phys. Lett. 67, 2008–2010 (1995).

    Article  Google Scholar 

  31. N. Nishiyama and A. Inoue, Mater. Trans., JIM 40, 64–71 (1999).

    Article  Google Scholar 

  32. Y. Saotome, S. Miwa, T. Zhang, and A. Inoue, J. Mater. Process. Technol. 113, 64–69 (2001).

    Article  Google Scholar 

  33. Y. Saotome, K. Itoh, T. Zhang, and A. Inoue, Scripta Mater. 44, 1541–1545 (2001).

    Article  Google Scholar 

  34. Y. Saotome and H. Iwazaki, J. Mater. Process. Technol. 119, 307–311 (2001).

    Article  Google Scholar 

  35. P. Sharma, N. Kaushik, H. Kimura, Y. Saotome, and A. Inoue, Nanotechnology 18, 035302 (2007).

    Article  Google Scholar 

  36. J.P. Chu, H. Wijaya, C.W. Wu, T.R. Tsai, C.S. Wei, T.G. Nieh, and J. Wadsworth, Appl. Phys. Lett. 90, 034101 (2007).

    Article  Google Scholar 

  37. J.A. Bardt, G.R. Bourne, T.L. Schmitz, J.C. Ziegert, and W.G. Sawyer, J. Mater. Res. 22, 339–343 (2007).

    Article  Google Scholar 

  38. D.L. Henann, V. Srivastava, H.K. Taylor, M.R. Hale, D.E. Hardt, and L. Anand, J. Micromech. Microeng. 19, 115030 (2009).

    Article  Google Scholar 

  39. A. Wiest, J.S. Harmon, M.D. Demetriou, R.D. Conner, and W.L. Johnson, Scripta Mater. 60, 160–163 (2009).

    Article  Google Scholar 

  40. J. Schroers, JOM 57, 35–39 (2005).

    Article  Google Scholar 

  41. G. Kumar and J. Schroers, Appl. Phys. Lett. 92, 031901 (2008).

    Article  Google Scholar 

  42. G. Kumar, H. Tang, and J. Schroers, Nature 457, 868–872 (2009).

    Article  Google Scholar 

  43. B. Sarac, J. Ketkaew, D.O. Popnoe, and J. Schroers, Adv. Funct. Mater. 22, 3161–3169 (2012).

    Article  Google Scholar 

  44. J. Schroers, Q. Pham, A. Peker, N. Paton, and R.V. Curtis, Scripta Mater. 57, 341–344 (2007).

    Article  Google Scholar 

  45. G. Kumar, P.A. Staffier, J. Blawzdziewicz, U.D. Schwarz, and J. Schroers, Appl. Phys. Lett. 97, 101907 (2010).

    Article  Google Scholar 

  46. T. Xia, N. Li, Y. Wu, and L. Liu, Appl. Phys. Lett. 101, 081601 (2012).

    Article  Google Scholar 

  47. J.J. He, N. Li, N. Tang, X.Y. Wang, C. Zhang, and L. Liu, Intermetallics 21, 50–55 (2012).

    Article  Google Scholar 

  48. N. Li, X.N. Xu, Z.Z. Zheng, and L. Liu, Acta Mater. 65, 400–411 (2014).

    Article  Google Scholar 

  49. N. Li, Y. Chen, M.Q. Jiang, D.J. Li, J.J. He, Y. Wu, and L. Liu, Acta Mater. 61, 1921–1931 (2013).

    Article  Google Scholar 

  50. N. Li, T. Xia, L.P. Heng, and L. Liu, Appl. Phys. Lett. 102, 251603 (2013).

    Article  Google Scholar 

  51. N. Li, D.J. Li, and L. Liu, Philo. Mag. 93, 1859–1872 (2013).

    Article  Google Scholar 

  52. J. Schroers, Adv. Mater. 21, 1–32 (2009).

    Google Scholar 

  53. R. Busch, E. Bakke, and W.L. Johnson, Acta Mater. 46, 4725–4731 (1998).

    Article  Google Scholar 

  54. T.A. Waniuk, R. Busch, A. Masuhr, and W.L. Johnson, Acta Mater. 46, 5229–5236 (1998).

    Article  Google Scholar 

  55. Y. Saotome, K. Imai, S. Shioda, S. Shimizu, T. Zhang, and A. Inoue, Intermetallics 10, 1241–1247 (2002).

    Article  Google Scholar 

  56. Y. Saotome, K. Imai, and N. Sawanobori, J. Mater. Process. Technol. 140, 379–384 (2001).

    Article  Google Scholar 

  57. J. Schroers, Acta Mater. 56, 471–478 (2008).

    Article  Google Scholar 

  58. E.B. Pitt, G. Kumar, and J. Schroers, J. Appl. Phys. 110, 043518 (2011).

    Article  Google Scholar 

  59. J. Lu, G. Ravichandran, and W.L. Johnson, Acta Mater. 51, 3429–3443 (2003).

    Article  Google Scholar 

  60. Y. Kawamura, T. Nakamura, A. Inoue, and T. Masumoto, Mater. Trans., JIM 40, 794–803 (1999).

    Article  Google Scholar 

  61. G. Kumar, D. Rector, R.D. Conner, and J. Schroers, Acta Mater. 57, 3572–3583 (2009).

    Article  Google Scholar 

  62. B.A. Legg, J. Schroers, and R. Busch, Acta Mater. 55, 1109–1116 (2007).

    Article  Google Scholar 

  63. B. Lohwongwatana, J. Schroers, and W.L. Johnson, Phys. Rev. Lett. 96, 075503 (2006).

    Article  Google Scholar 

  64. B. Gun, K.J. Laws, and M. Ferry, J. Non-Cryst. Solids 352, 3887–3895 (2006).

    Article  Google Scholar 

  65. M. Wu, J.S. Tse, S.Y. Wang, C.Z. Wang, and J.Z. Jiang, Nat. Commun. 6, 6493 (2015).

    Article  Google Scholar 

  66. J.Z. Jiang, T.J. Zhou, H. Rasmussen, U. Kuhn, J. Eckert, and C. Lathe, Appl. Phys. Lett. 77, 3553 (2000).

    Article  Google Scholar 

  67. C. Peng, Z.H. Chen, X.Y. Zhao, A.L. Zhang, L.K. Zhang, and D. Chen, J. Non-Cryst. Solids 405, 7–11 (2014).

    Article  Google Scholar 

  68. M. Gopinadhan, Z. Shao, Y.H. Liu, S. Mukherjee, R.C. Sekoll, G. Kumar, A.D. Taylor, J. Schroers, and C.O. Osuji, Appl. Phys. Lett. 103, 111912 (2013).

    Article  Google Scholar 

  69. A. Pratap and A.T. Patel, in Advances in Crystallization Processes, ed. by Y. Mastai (InTech, 2012), p. 107.

  70. H.Y. Sun, J.S. Wang, L.J. Cao, and Q.G. Xue, Thermochim. Acta 537, 80–85 (2012).

    Article  Google Scholar 

  71. A.T. Patel and A. Pratap, J. Therm. Anal. Calorim. 107, 159–165 (2012).

    Article  Google Scholar 

  72. S.R. Cheng, C.J. Wang, M.Z. Ma, D.B. Shan, and B. Guo, Thermochim. Acta 587, 11–17 (2014).

    Article  Google Scholar 

  73. S. Lan, X.Y. Wei, J. Zhou, Z.P. Lu, X.L. Wu, M. Feygenson, J. Neuefeind, and X.L. Wang, Appl. Phys. Lett. 105, 201906 (2014).

    Article  Google Scholar 

  74. M. Stoica, S. Kumar, S. Roth, S. Ram, J. Eckert, G. Vaughan, and A.R. Yavari, J. Alloys Compd. 483, 632–637 (2009).

    Article  Google Scholar 

  75. A. Révész, J. Therm. Anal. Calorim. 91, 879–884 (2008).

    Article  Google Scholar 

  76. E. Jakubczyk, L. Krajczyk, P. Siemion, and M. Jakubczyk, Opt. Appl. 37, 359–370 (2007).

    Google Scholar 

  77. K.S. Lee, Y.M. Jo, and Y.S. Lee, J. Non-Cryst. Solids 376, 145–151 (2013).

    Article  Google Scholar 

  78. M. Zhu, J.J. Li, L.J. Yao, Z.Y. Jian, F.E. Chang, and G.C. Yang, Thermochim. Acta 565, 132–136 (2013).

    Article  Google Scholar 

  79. J.L. Wu, Y. Pan, J.D. Huang, and J.H. Pi, Thermochim. Acta 552, 15–22 (2013).

    Article  Google Scholar 

  80. J. Cui, J.S. Li, J. Wang, H.C. Kou, J.C. Qiao, S. Gravier, and J.J. Blandin, J. Non-Cryst. Solids 404, 7–12 (2014).

    Article  Google Scholar 

  81. J.C. Qiao and J.M. Pelletier, Solids 357, 2590–2594 (2011).

    Google Scholar 

  82. S. Kasyap, A.T. Patel, and A. Pratap, J. Therm. Anal. Calorim. 116, 1325–1336 (2014).

    Article  Google Scholar 

  83. H.C. Kou, J. Wang, H. Chang, B. Tang, J.S. Li, R. Hu, and L. Zhou, J. Non-Cryst. Solids 355, 420–424 (2009).

    Article  Google Scholar 

  84. K.G. Prashanth, S. Scudino, K.B. Surreddi, M. Sakaliyska, B.S. Murty, and J. Eckert, Mater. Sci. Eng., A 513–514, 279–285 (2009).

    Article  Google Scholar 

  85. L. Liu, X.J. Zhao, C.L. Ma and T. Zhang: Intermetallics, 17241-245 (2009).

  86. Y.D. Sun, P. Shen, Z.Q. Li, J.S. Liu, M.Q. Cong, and M. Jiang, J. Non-Cryst. Solids 358, 1120–1127 (2012).

    Article  Google Scholar 

  87. K. Kelton and A.L. Greer, Nucleation in Condensed Matter: Applications in Materials and Biology (Boston: Elsevier, 2010), p. 42.

    Google Scholar 

  88. F. Spaepen, Acta Metall. 25, 407–415 (1977).

    Article  Google Scholar 

  89. C.A. Angell, Science 267, 1924–1935 (1995).

    Article  Google Scholar 

  90. R. Boehmer, K.L. Ngai, C.A. Angell, and D.J. Plazek, J. Chem. Phys. 99, 4201–4209 (1993).

    Article  Google Scholar 

  91. R. Busch, J. Schroers, and W.H. Wang, MRS Bull. 32, 620–623 (2007).

    Article  Google Scholar 

  92. H. Kato, T. Wada, M. Hasegawa, J. Saida, A. Inoue, and H.S. Chen, Scripta Mater. 54, 2023–2027 (2006).

    Article  Google Scholar 

  93. N. Li, L. Liu, K.C. Chan, Q. Chen, and J. Pan, Intermetallics 17, 227–230 (2009).

    Article  Google Scholar 

  94. W.L. Johnson, G. Kaltenboeck, M.D. Demetriou, J.P. Schramm, X. Liu, K. Samwer, C.P. Kim, and D.C. Hofmann, Science 332, 828–833 (2011).

    Article  Google Scholar 

  95. G. Kaltenboeck, T. Harris, K. Sun, T. Tran, G. Chang, J.P. Schramm, M.D. Demetriou, and W.L. Johnson, Sci. Rep. 4, 6441 (2014).

    Article  Google Scholar 

  96. W. Zhang and A. Inoue, Mater. Trans. 44, 2220–2223 (2003).

    Article  Google Scholar 

  97. G. Duan, A. Wiest, M.L. Lind, J. Li, W.K. Rhim, and W.L. Johnson, Adv. Mater. 19, 4272–4275 (2007).

    Article  Google Scholar 

  98. Y. Kawamura, T. Nakamura, and A. Inoue, Scripta Mater. 39, 301–306 (1998).

    Article  Google Scholar 

  99. W.L. Johnson, J. Lu, and M.D. Demetriou, Intermetallics 10, 1039–1046 (2002).

    Article  Google Scholar 

  100. M.H. Cohen and G.S. Grest, Phys. Rev. B 20, 1077–1098 (1979).

    Article  Google Scholar 

  101. T. Zumkley, S. Suzuki, M. Seidel, S. Mechler, and M.P. Macht, Mater. Sci. Forum 386–388, 541–546 (2002).

    Article  Google Scholar 

  102. Y. Kawamura, T. Shibataa, A. Inouea, and T. Masumotoa, Acta Mater. 46, 253–263 (1998).

    Article  Google Scholar 

  103. J.A. Wert, C. Thomsen, R.D. Jrensen, and M. Arentoft, J. Mater. Proc. Technol. 209, 1570–1579 (2009).

    Article  Google Scholar 

  104. H.S. Kim, H. Kato, A. Inoue, and H.S. Chen, Acta Mater. 52, 3813–3823 (2004).

    Article  Google Scholar 

  105. X. Wu, J.J. Li, Z.Z. Zheng, L. Liu, and Y. Li, Scripta Mater. 63, 469–472 (2010).

    Article  Google Scholar 

  106. D. Wang, T. Shi, J. Pan, G.L. Liao, Z.R. Tang, and L. Liu, J. Mater. Proc. Technol. 210, 684–688 (2010).

    Article  Google Scholar 

  107. Y. Kawamura, T. Nakamura, H. Kato, H. Mano, and A. Inoue, Mater. Sci. Eng. A 304–306, 674–678 (2001).

    Article  Google Scholar 

  108. U. Engel and R. Eckstein, J. Mater. Proc. Technol. 125, 35–44 (2002).

    Article  Google Scholar 

  109. U. Engel, Wear 260, 265–273 (2006).

    Article  Google Scholar 

  110. F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Part I (Oxford: Oxford Clarendon Press, 1950).

    MATH  Google Scholar 

  111. F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Part II (Oxford: Oxford Clarendon Press, 1964).

    MATH  Google Scholar 

  112. K.L. Johnson, Proc. R. Soc. Lond. Ser. A 453, 163–179 (1997).

    Article  Google Scholar 

  113. R. Martinez, G. Kumar, and J. Schroers, Scripta Mater. 59, 187–190 (2008).

    Article  Google Scholar 

  114. J. Schroers, Q. Pham, and A. Desai, J. Microelectromech. Syst. 16, 240–247 (2007).

    Article  Google Scholar 

  115. B. Sarac, G. Kumar, T. Hodges, S. Ding, A. Desai, and J. Schroers, J. Microelectromech. Syst. 20, 28–36 (2011).

    Article  Google Scholar 

  116. J.C. Hung and C.C. Huang, Int. J. Precis. Eng. Manuf. 13, 2103–2108 (2012).

    Article  Google Scholar 

  117. Z.H. Yao, G.Y. Kim, L. Faidley, Q.Z. Zou, D.Q. Mei, and Z.C. Chen, Mater. Manuf. Processes 28, 584–588 (2013).

    Article  Google Scholar 

  118. Y. Daud, M. Lucas, and Z.H. Huang, Ultrasonics 44, e511–e515 (2006).

    Article  Google Scholar 

  119. S.T. Liu, Z. Wang, H.L. Peng, H.B. Yu, and W.H. Wang, Scripta Mater. 67, 9–12 (2012).

    Article  Google Scholar 

  120. L.S. Huo, J.F. Zeng, W.H. Wang, C.T. Liu, and Y. Yang, Acta Mater. 61, 4329–4338 (2013).

    Article  Google Scholar 

  121. H. Wagner, D. Bedorf, S. Kuchemann, M. Schwabe, B. Zhang, W. Arnold, and K. Samwer, Nat. Mater. 10, 439–442 (2011).

    Article  Google Scholar 

  122. W. Dmowski, T. Iwashita, C.P. Chuang, J. Almer, and T. Egami, Phys. Rev. Lett. 105, 205502 (2010).

    Article  Google Scholar 

  123. X.N. Xu, N. Li, and L. Li, J. Alloys Compd. 589, 524–530 (2014).

    Article  Google Scholar 

  124. M. Carmo, R.C. Sekol, S.Y. Ding, G. Kumar, J. Schroers, and A.D. Taylor, ACS Nano 5, 2979–2983 (2011).

    Article  Google Scholar 

  125. R.C. Sekol, G. Kumar, M. Carmo, F. Gittleson, N. Hardesty-Dyck, S. Mukherjee, J. Schroers, and A.D. Taylor, Small 9, 2081–2085 (2013).

    Article  Google Scholar 

  126. A. Inoue and A. Takeuchi, Acta Mater. 59, 2243–2267 (2011).

    Article  Google Scholar 

  127. M. Hasan, J. Schroers, and G. Kumar, Nano Lett. 15, 963–968 (2015).

    Article  Google Scholar 

  128. C.T. Pan, T.T. Wu, Y.C. Chang, and J.C. Huang, J. Micromech. Microeng. 18, 025010 (2008).

    Article  Google Scholar 

  129. J. Bardt, N. Mauntler, G. Bourne, T.L. Schmitz, J.C. Ziegert, and W.G. Sawyer, Metallic Glass Surface Patterning by Micro-molding, Proceedings of IMECE-2005, November 5–11, Orlando, FL.

  130. X. Liu, Y. Shao, S.Y. Lu, and K.F. Yao, J. Polym. Sci., Part B: Polym. Phys. 53, 463–467 (2015).

    Article  Google Scholar 

  131. T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, and Y. Ueda, Langmuir 15, 4321–4323 (1999).

    Article  Google Scholar 

  132. A.B.D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546–551 (1944).

    Article  Google Scholar 

  133. J. Schroers, T.M. Hodges, G. Kumar, H. Raman, A.J. Barnes, Q. Pham, and T.A. Waniuk, Mater. Today 14, 14–19 (2011).

    Article  Google Scholar 

  134. Z. Liu and J. Schroers, Nanotechnology 26, 145301 (2015).

    Article  Google Scholar 

  135. J.H. Na, M.D. Demetriou, and W.L. Johnson, Appl. Phys. Lett. 99, 161902 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China under Grant No 51005081. The authors would like to thank all the group members for their contributions to this work. The authors are grateful to the Analytical and Testing Center, Huazhong University of Science and Technology for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Chen, W. & Liu, L. Thermoplastic Micro-Forming of Bulk Metallic Glasses: A Review. JOM 68, 1246–1261 (2016). https://doi.org/10.1007/s11837-016-1844-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1844-y

Keywords

Navigation