Skip to main content
Log in

Deforming Fluid Domains Within the Finite Element Method: Five Mesh-Based Tracking Methods in Comparison

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Fluid flow applications can involve a number of coupled problems. One is the simulation of free-surface flows, which require the solution of a free-boundary problem. Within this problem, the governing equations of fluid flow are coupled with a domain deformation approach. This work reviews five of those approaches: interface tracking using a boundary-conforming mesh and, in the interface capturing context, the level-set method, the volume-of-fluid method, particle methods, as well as the phase-field method. The history of each method is presented in combination with the most recent developments in the field. Particularly, the topics of extended finite elements and NURBS-based methods, such as isogeometric analysis, are addressed. For illustration purposes, two applications have been chosen: two-phase flow involving drops or bubbles and sloshing tanks. The challenges of these applications, such as the geometrically correct representation of the free surface or the incorporation of surface tension forces, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Numerical algorithms on a staggered grid. http://irs.ub.rug.nl/dbi/43789c2bd41de

  2. Adalsteinsson D, Sethian J (2003) Transport and diffusion of material quantities on propagating interfaces via level set methods. J Comput Phys 185(1):271–288

    Article  MathSciNet  MATH  Google Scholar 

  3. Adelsberger J, Esser P, Griebel M, Groß S, Klitz M, Rüttgers A (2014) 3D incompressible two-phase flow benchmark computations for rising droplets, Technical Report. University of Bonn

  4. Aland S, Lowengrub J, Voigt A (2010) Two-phase flow in complex geometries: a diffuse domain approach. Comput Model Eng Sci 57(1):77–106

    MathSciNet  MATH  Google Scholar 

  5. Aland S, Voigt A (2012) Benchmark computations of diffuse interface models for two-dimensional bubble dynamics. Int J Numer Methods Fluids 69:747–761

    Article  MathSciNet  Google Scholar 

  6. Amsden A, Harlow F (1970) A simplified MAC technique for incompressible fluid flow calculations. J Comput Phys 6(2):322–325

    Article  MATH  Google Scholar 

  7. Aniszewski W, Ménard T, Marek M (2014) Volume of Fluid (VOF) type advection methods in two-phase flow: a comparative study. Comput Fluids 97:52–73

    Article  MathSciNet  Google Scholar 

  8. Ansari M, Firouz-Abadi R, Ghasemi M (2011) Two phase modal analysis of nonlinear sloshing in a rectangular container. Ocean Eng 38:1277–1282

    Article  Google Scholar 

  9. Arienti M, Li X, Eckett MSC, Sussman M, Jensen R (2013) Coupled level-set/volume-of-fluid method for simulation of injector atomization. J Propul Power 29(1):147–157

    Article  Google Scholar 

  10. Aubert F, Aulisa E, Manservisi S, Scardovelli R (2006) Interface tracking with dynamically-redistributed surface markers in unstructured quadrangular grids. Comput Fluids 35:1332–1343

    Article  MATH  Google Scholar 

  11. Ausas R, Sousa F, Buscaglia G (2010) An improved finite element space for discontinuous pressures. Comput Methods Appl Mech Eng 199(17):1019–1031

    Article  MathSciNet  MATH  Google Scholar 

  12. Axelsson O (1994) Iterative solution methods. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  13. Axelsson O, Boyanova P, Kronbichler M, Neytcheva M, Wu X (2013) Numerical and computational efficiency of solvers for two-phase problems. Comput Math Appl 65(3):301–314

    Article  MathSciNet  MATH  Google Scholar 

  14. Babuska I, Chandra J, Flaherty J, Division U.S.A.R.O.M.S. (1983) Adaptive computational methods methods for partial differential equations. In: Proceedings in applied mathematics series. Society for Industrial and Applied Mathematics

  15. Baltussen M, Kuipers J, Deen N (2014) A critical comparison of surface tension models for the volume of fluid method. Chem Eng Sci 109:64–74

    Article  Google Scholar 

  16. Bänsch E (2001) Finite element discretization of the Navier–Stokes equations with a free capillary surface. Numer Math 88(2):203–235

    Article  MathSciNet  MATH  Google Scholar 

  17. Barreira R, Elliott C, Madzvamuse A (2011) The surface finite element method for pattern formation on evolving biological surfaces. J Math Biol 63(6):1095–1119

    Article  MathSciNet  MATH  Google Scholar 

  18. Barrett J, Garcke H, Nürnberg R (2013) Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow. Comput Methods Appl Mech Eng 267:511–530

    Article  MathSciNet  MATH  Google Scholar 

  19. Batchelor G (1967) An introduction to fluid dynamics, Cambridge Mathematical Library. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  20. Bazilevs Y, Calo V, Cottrell J, Evans J, Hughes T, Lipton S, Scott M, Sederberg T (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263

    Article  MathSciNet  MATH  Google Scholar 

  21. Behr M (1992) Stabilized finite element methods for incompressible flows with emphasis on moving boundaries and interfaces. Ph.D. thesis, University of Minnesota, Department of Aerospace Engineering and Mechanics

  22. Behr M (2004) On the application of slip boundary condition on curved boundaries. Int J Numer Methods Fluids 45(1):43–51

    Article  MATH  Google Scholar 

  23. Behr M, Johnson A, Kennedy J, Mittal S, Tezduyar T (1993) Computation of incompressible flows with implicit finite element implementations on the connection machine. Comput Methods Appl Mech Eng 108:99–118

    Article  MathSciNet  MATH  Google Scholar 

  24. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    Article  MathSciNet  MATH  Google Scholar 

  25. Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Model Simul Mater Sci Eng 17(4):043001

  26. Belytschko T, Kennedy J, Schoeberle D (1980) Quasi-Eulerian finite element formulation for fluid–structure interaction. J Press Vessel Technol 102(1):62–69

    Article  Google Scholar 

  27. Bernard O, Friboulet D, Thévenaz P, Unser M (2008) Variational B-spline level-set method for fast image segmentation. In: 5th IEEE international symposium on biomedical imaging: from nano to macro, 2008. ISBI 2008. IEEE, pp 177–180

  28. Bertakis E, Groß S, Grande J, Fortmeier O, Reusken A, Pfennig A (2010) Validated simulation of droplet sedimentation with finite-element and level-set methods. Chem Eng Sci 65(6):2037–2051

    Article  Google Scholar 

  29. Bertalmio M, Cheng LT, Osher S, Sapiro G (2001) Variational problems and partial differential equations on implicit surfaces. J Comput Phys 174(2):759–780

    Article  MathSciNet  MATH  Google Scholar 

  30. Boettinger W, Warren J, Beckermann C, Karma A (2002) Phase-field simulation of solidification. Annu Rev Mater Res 32:163–194

    Article  Google Scholar 

  31. Bonnerot R, Jamet P (1977) Numerical computation of the free boundary for the two-dimensional Stefan problem by space–time finite elements. J Comput Phys 25:163–181

    Article  MathSciNet  MATH  Google Scholar 

  32. Brackbill J, Kothe D, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354

    Article  MathSciNet  MATH  Google Scholar 

  33. Caboussat A (2005) Numerical simulation of two-phase free surface flows. Arch Comput Mech Eng 12(2):165–224

    Article  MathSciNet  MATH  Google Scholar 

  34. Chan R, Street R (1970) A computer study of finite-amplitude water waves. J Comput Phys 6:68–94

    Article  MATH  Google Scholar 

  35. Chang Y, Hou T, Merriman B, Osher S (1996) A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J Comput Phys 124(2):449–464

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen S, Merriman B, Osher S, Smereka P (1997) A simple level set method for solving Stefan problems. J Comput Phys 135(1):8–29

    Article  MathSciNet  MATH  Google Scholar 

  37. Cheng K (2010) h- and p-XFEM with application to two-phae incompressible flow. Ph.D. thesis, RWTH Aachen University

  38. Chessa J, Belytschko T (2003) An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension. Int J Numer Methods Eng 58(13):2041–2064

    Article  MathSciNet  MATH  Google Scholar 

  39. Chessa J, Belytschko T (2003) An extended finite element method for two-phase fluids. J Appl Mech ASME 70(1):10–17

    Article  MathSciNet  MATH  Google Scholar 

  40. Chessa J, Belytschko T (2004) Arbitrary discontinuities in space–time finite elements by level sets and X-FEM. Int J Numer Methods Eng 61:2595–2614

    Article  MathSciNet  MATH  Google Scholar 

  41. Chessa J, Smolinski P, Belytschko T (2002) The extended finite element method (XFEM) for solidification problems. Int J Numer Methods Eng 53(8):1959–1977

    Article  MathSciNet  MATH  Google Scholar 

  42. Chippada S, Ramaswamy B, Wheeler M (1994) Numerical simulation of hydraulic jump. Int J Numer Methods Eng 37(8):1381–1397

    Article  MATH  Google Scholar 

  43. Cho M, Choi H, Yoo J (2010) A direct reinitialization approach for level-set/splitting finite element method for simulating incompressible two-phase flows. Int J Numer Methods Fluids 67(11):1637–1654

    Article  MathSciNet  MATH  Google Scholar 

  44. Choi S, Lee K, Hong K, Shin S, Gudmestad O (2013) Nonlinear wave forces on an offshore wind turbine foundation in shallow waters. Int J Ocean Syst Eng 3(2):68–76

    Article  Google Scholar 

  45. Clift R, Grace J, Weber M (1978) Bubbles, drops, and particles. Academic Press, London

    Google Scholar 

  46. Cline D, Cardon D, Egbert P (2013) Fluid flow for the rest of us: tutorial of the marker and cell method in computer graphics, Technical Report. Brigham Young University

  47. Collins G (2004) The foundations of celestial mechanics. Pachart Publishing House, Tucson

    Google Scholar 

  48. Coppola-Owen A, Codina R (2005) Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions. Int J Numer Methods Fluids 49(12):1287–1304

    Article  MathSciNet  MATH  Google Scholar 

  49. Coppolla-Owen H (2009) A finite element method for free surface and two fluid flows on fixed meshes. Ph.D. thesis, Universitat Politecnica de Catalunya

  50. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York

    Book  Google Scholar 

  51. Coutinho A (2014) Some reflections on big data and computational mechanics. iacm expressions 35

  52. Croce R, Griebel M, Schweitzer MA (2010) Numerical simulation of bubble and droplet deformation by a level set approach with surface tension in three dimensions. Int J Numer Methods Fluids 62(9):963–993

    MathSciNet  MATH  Google Scholar 

  53. Cruchaga M, Reinoso R, Storti M, Celentano D, Tezduyar T (2013) Finite element computation and experimental validation of sloshing in rectangular tanks. Comput Mech 52(6):1301–1312

    Article  MATH  Google Scholar 

  54. Cummins SJ, Francois MM, Kothe DB (2005) Estimating curvature from volume fractions. Comput Struct 83(6):425–434

    Article  Google Scholar 

  55. Daly B (1969) A technique for including surface tension effects in hydrodynamics calculations. J Comput Phys 4:97–117

    Article  MATH  Google Scholar 

  56. Davies J, Rideal E (1963) Interfacial phenomena. Academic Press, London

    Google Scholar 

  57. Deckelnick K, Elliott C, Styles V (2001) Numerical diffusion-induced grain boundary motion. Interfaces Free Bound 3(4):393–414

    Article  MathSciNet  MATH  Google Scholar 

  58. Dedè L, Borden M, Hughes T (2012) Isogeometric analysis for topology optimization with a phase field model. Arch Comput Mech Eng 19:427–465

    Article  MathSciNet  Google Scholar 

  59. Denner F, van Wachem B (2014) Fully-coupled balanced-force VOF framework for arbitrary meshes with least-squares curvature evaluation from volume fractions. Numer Heat Transf Part B Fundam Int J Comput Methodol 65(3):218–255

    Article  Google Scholar 

  60. Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, New York

    Book  Google Scholar 

  61. Doyeux V, Guyot Y, Chabannes V, Prud’homme C, Ismaila M (2013) Simulation of two-fluid flows using a finite element/level set method. Application to bubbles and vesicle dynamics. J Comput Appl Math 246:251–259

    Article  MathSciNet  MATH  Google Scholar 

  62. Dziuk G (1991) An algorithm for evolutionary surfaces. Numer Math 58(1):603–612

    Article  MathSciNet  MATH  Google Scholar 

  63. Dziuk G, Elliott C (2007) Finite elements on evolving surfaces. SIAM 27(2):262–292

    MathSciNet  MATH  Google Scholar 

  64. Dziuk G, Elliott C (2010) An Eulerian approach to transport and diffusion on evolving implicit surfaces. Comput Vis Sci 13(1):17–28

    Article  MathSciNet  MATH  Google Scholar 

  65. Easton CR (1972) Homogeneous boundary conditions for pressure in the MAC method. J Comput Phys 9:375–379

    Article  MATH  Google Scholar 

  66. Echebarria B, Folch R, Karma A, Plapp M (2004) Quantitative phase-field model of alloy solidification. Phys Rev E 70:061,604

    Article  Google Scholar 

  67. Elgeti S, Probst M, Windeck C, Behr M, Michaeli W, Hopmann C (2012) Numerical shape optimization as an approach to extrusion die design. Finite Elem Anal Des 48:35–43

    Article  MathSciNet  Google Scholar 

  68. Elgeti S, Sauerland H, Pauli L, Behr M (2012) On the usage of NURBS as interface representation in free-surface flows. Int J Numer Methods Fluids 69(1):73–87

    Article  MathSciNet  MATH  Google Scholar 

  69. Emmerich H (2003) The diffuse interface approach in matrials science: thermodynamic concepts and applications of phase-field models. Springer, Berlin

    MATH  Google Scholar 

  70. Engblom S, Do-Quang M, Amberg G, Tornberg AK (2013) On diffuse interface modeling and simulation of surfactants in two-phase fluid flow. Commun Comput Phys 14(4):879–915

    MathSciNet  Google Scholar 

  71. Engelman M, Sani R, Gresho P (1982) The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow. Int J Numer Methods Fluids 2:225–238

    Article  MathSciNet  MATH  Google Scholar 

  72. Enschenburg JH, Jost J (2007) Differentialgeometrie und Minimalflächen. Springer, Berlin

    Google Scholar 

  73. Ern A, Guermond JL (2003) Applied mathematical sciences. In: Antman S, Marsden J, Sirovich L (eds) Theory and practice of finite elements, vol 159. Springer, Berlin

    Google Scholar 

  74. Ferziger J, Perić M (1999) Computational methods for fluid dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  75. Fife P, Cahn J, Elliott C (2001) A free-boundary model for diffusion-induced grain boundary motion. Interfaces Free Bound 3:291–336

    Article  MathSciNet  MATH  Google Scholar 

  76. Frederiksen C, Watts A (1981) Finite-element method for time-dependent incompressible free surface flows. J Comput Phys 39:282–304

    Article  MathSciNet  MATH  Google Scholar 

  77. Fries T (2008) The intrinsic XFEM for two-fluid flows. Int J Numer Methods Fluids 60:437–471

    Article  MathSciNet  MATH  Google Scholar 

  78. Fries T, Belytschko T (2010) The extended/generalized finite element method: An overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304

    MathSciNet  MATH  Google Scholar 

  79. Fries T, Byfut A, Alizada A, Cheng K, Schröder A (2011) Hanging nodes and XFEM. Int J Numer Methods Eng 86(4–5):404–430

    Article  MathSciNet  MATH  Google Scholar 

  80. Fuchs M, Jüttler B, Scherzer O, Yang H (2007) Combined evolution of level sets and b-spline curves for imaging, Technical Report, FSP Report No. 41

  81. Ganesan S, Matthies G, Tobiska L (2007) On spurious velocities in incompressible flow problems with interfaces. Comput Methods Appl Mech Eng 196:1193–1202

    Article  MathSciNet  MATH  Google Scholar 

  82. Ganesan S, Matthies G, Tobiska L (2007) On spurious velocities in incompressible flow problems with interfaces. Comput Methods Appl Mech Eng 196(7):1193–1202

    Article  MathSciNet  MATH  Google Scholar 

  83. Ganesan S, Tobiska L (2006) Computations of flows with interfaces using arbitrary lagrangian eulerian method. In: Wesseling P, Oñate E, Périaux J (eds) European conference on computational fluid dynamics. TU Delft, Delft

    Google Scholar 

  84. Ganesan S, Tobiska L (2009) A coupled arbitrary Lagrangian–Eulerian and Lagrangian method for computation of free surface flows with insoluble surfactants. J Comput Phys 228(8):2859–2873

    Article  MathSciNet  MATH  Google Scholar 

  85. Ganesan S, Tobiska L (2009) Modelling and simulation of moving contact line problems with wetting effects. Comput Vis Sci 12(7):329–336

    Article  MathSciNet  MATH  Google Scholar 

  86. Ganesan S, Tobiska L (2012) Arbitrary Lagrangian–Eulerian finite-element method for computation of two-phase flows with soluble surfactants. J Comput Phys 231:3685–3702

    Article  MathSciNet  MATH  Google Scholar 

  87. Gavrilyuk I, Hermann M, Lukovsky I, Solodun O, Timokha A (2013) Weakly nonlinear sloshing in a truncated circular conical tank. Fluid Dyn Res 45(5):055512

  88. Gibbs J (1874–1878) On the equilibrium of heterogeneous substances. Trans Conneticut Acad Arts Sci 2:300–320

  89. Girault V (1976) A combined finite element and marker and cell method for solving Navier–Stokes equations. Numer Math 26:39–59

    Article  MathSciNet  MATH  Google Scholar 

  90. Gómez H, Calo V, Bazilevs Y, Hughes T (2008) Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput Methods Appl Mech Eng 197(49):4333–4352

    Article  MathSciNet  MATH  Google Scholar 

  91. Gómez-Goñi J, Garrido-Mendoza CA, Cercós JL, González L (2013) Two phase analysis of sloshing in a rectangular container with Volume of Fluid (VOF) methods. Ocean Eng 73:208–212

    Article  Google Scholar 

  92. Gonzalez-Ferreiro B, Gomez H, Romero I (2014) A thermodynamically consistent numerical method for a phase field model of solidification. Commun Nonlinear Sci Numer Simul 19(7):2309–2323

    Article  MathSciNet  Google Scholar 

  93. Gray A (1998) Modern differential geometry of curves and surfaces with Mathematica, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  94. de Groot S, Mazur P (1984) Non-equilibrium thermodynamics, 1st edn. Dover, New York

    MATH  Google Scholar 

  95. Groß S, Reusken A (2007) An extended pressure finite element space for two-phase incompressible flows with surface tension. J Comput Phys 224(1):40–58

    Article  MathSciNet  MATH  Google Scholar 

  96. Gross S, Reusken A (2007) Finite element discretization error analysis of a surface tension force in two-phase incompressible flows. SIAM 45(4):1679–1700

    MathSciNet  MATH  Google Scholar 

  97. Groß S, Reusken A (2010) Numerical methods for two-phase incompressible flows. Springer, Berlin

    MATH  Google Scholar 

  98. Grün G, Klingbeil F (2014) Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model. J Comput Phys 257(A):708–725

    Article  MathSciNet  Google Scholar 

  99. Gyrmati I (1970) Non-equilibrium thermodynamics, 1st edn. Springer, New York

    Book  Google Scholar 

  100. Hansbo P (1992) The characteristic streamline diffusion method for the time-dependent incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 99:171–186

    Article  MathSciNet  MATH  Google Scholar 

  101. Hansbo P, Szepessy A (1990) A velocity–pressure streamline diffusion finite element method for the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 84:175–192

    Article  MathSciNet  MATH  Google Scholar 

  102. Harlow F, Welch J, Shannon J, Daly B (1965) The MAC method. Report LA-3425. Los Alamos Scientific Laboratory, New Mexico

    Google Scholar 

  103. Hartmann D, Meinke M, Schröder W (2008) Differential equation based constrained reinitialization for level set methods. J Comput Phys 227(14):6821–6845

    Article  MathSciNet  MATH  Google Scholar 

  104. Hayashi M, Hatanaka K, Kawahara M (1991) Lagrangian finite element method for free surface Navier–Stokes flow using fractional step methods. Int J Numer Methods Fluids 13(7):805–840

    Article  MATH  Google Scholar 

  105. Hirt C, Amsden A, Cook J (1974) An arbitrary Lagrangian Eulerian computing method for all flow speeds. J Comput Phys 14:227–253

    Article  MATH  Google Scholar 

  106. Hirt C, Cook J, Butler T (1970) A Lagrangian method for calculating the dynamics of an incompressible fluid with free surface. J Comput Phys 5:103–124 MAC versus Lagrangian; Lagrangian surface tension instabilities

    Article  MATH  Google Scholar 

  107. Hirt C, Nichols B (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  MATH  Google Scholar 

  108. Hirt CW, Nichols BD, Romero NC (1975) SOLA: a numerical solution algorithm for transient fluid flows. Technical Report, 32418, NASA STI/Recon Technical Report N 75

  109. Hübner B, Walhorn E, Dinkler D (2004) A monolithic approach to fluid–structure interaction using space–time finite elements. Comput Methods Appl Mech Eng 193:2087–2104

    Article  MATH  Google Scholar 

  110. Huerta A, Liu W (1988) Viscous flow with large free surface motion. Comput Methods Appl Mech Eng 69:277–324

    Article  MATH  Google Scholar 

  111. Hughes T, Hulbert G (1988) Space–time finite element methods for elastodynamics: formulations and error estimates. Comput Methods Appl Mech Eng 66:339–363

    Article  MathSciNet  MATH  Google Scholar 

  112. Hughes T, Liu W, Zimmermann T (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

    Article  MathSciNet  MATH  Google Scholar 

  113. Hughes TJR (2000) The finite element method. Dover, New York

    MATH  Google Scholar 

  114. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  115. Hysing S, Turek S (2005) The eikonal equation: numerical efficiency vs. algorithmic complexity on quadrilateral grids. In: Proceedings of algoritmy 2005, conference on scientific computing. Slowak University of Technology, Bratislava, pp 22–31, ISBN 80-227-2192-1

  116. Hysing S, Turek S, Kuzmin D, Parolini N, Burman E, Ganesan S, Tobiska L (2009) Quantitative benchmark computations of two-dimensional bubble dynamics. Int J Numer Methods Fluids 60(11):1259–1288

    Article  MathSciNet  MATH  Google Scholar 

  117. Idelsohn S, Mier-Torrecilla M, Nigro N, Oñate E (2010) On the analysis of heterogeneous fluids with jumps in the viscosity using a discontinuous pressure field. Comput Mech 46(1):115–124

    Article  MathSciNet  MATH  Google Scholar 

  118. Ito K, Kunugi T, Ohshima H, Kawamura T (2013) A volume-conservative PLIC algorithm on three-dimensional fully unstructured meshes. Comput Fluids 88:250–261

    Article  MathSciNet  Google Scholar 

  119. James A, Lowengrub J (2004) A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J Comput Phys 201(2):685–722

    Article  MathSciNet  MATH  Google Scholar 

  120. Jamet P (1978) Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM 15(5):912–928

    MathSciNet  MATH  Google Scholar 

  121. Jamet P, Bonnerot R (1975) Numerical solution of the Eulerian equations of compressible flow by a finite element method which follows the free boundary and the interfaces. J Comput Phys 18:21–45

    Article  MathSciNet  MATH  Google Scholar 

  122. Johnson A, Tezduyar T (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94

    Article  MATH  Google Scholar 

  123. Kakuda K, Nagashima T, Hayashi Y, Obara S, Toyotani J, Miura S, Katsurada N, Higuchi S, Matsuda S (2013) Three-dimensional fluid flow simulations using GPU-based particle method. Comput Model Eng Sci 93(5):363–376

    MathSciNet  Google Scholar 

  124. Kang M, Fedkiw R, Liu XD (2000) A boundary condition capturing method for multiphase incompressible flow. J Sci Comput 15(3):323–360

    Article  MathSciNet  MATH  Google Scholar 

  125. Kistler J (1993) Hydrodynamics of wetting, vol. Wettability. Dekker, New York

    Google Scholar 

  126. Kjellgren P, Hyvarinen J (1998) An arbitrary Lagrangian–Eulerian finite element method. Comput Mech 21(1):81–90

    Article  MATH  Google Scholar 

  127. Kleefsman K, Fekken G, Veldman A, Iwanowski B, Buchner B (2005) A volume-of-fluid based simulation method for wave impact problems. J Comput Phys 206(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  128. Klinkel S (2012) Fortgeschrittene Strukturanalysen. Technical Report, RWTH Aachen University

  129. Klostermann J, Schaake K, Schwarze R (2013) Numerical simulation of a single rising bubble by VOF with surface compression. Int J Numer Methods Fluids 71:960–982

    Article  MathSciNet  Google Scholar 

  130. Knupp P, Margolin L, Shashkov M (2002) Reference Jacobian optimization-based rezone strategies for Arbitrary Lagrangian Eulerian methods. J Comput Phys 176(1):93–128

    Article  MATH  Google Scholar 

  131. Kölke A (2005) Modellierung und Diskretisierung bewegter Diskontinuitäten in randgekoppelten Mehrfeldsystemen. Ph.D. thesis, Technical University Braunschweig

  132. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123:421–434

    Google Scholar 

  133. Lee YG, Jeong KL, Kim N (2012) The marker-density method in cartesian grids applied to nonlinear ship waves. Comput Fluids 63:57–69

    Article  MathSciNet  Google Scholar 

  134. Leung C, Berzins M (2003) A computational model for organism growth based on surface mesh generation. J Comput Phys 188(1):75–99

    Article  MathSciNet  MATH  Google Scholar 

  135. Leung S, Lowengrub J, Zhao H (2011) A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion. J Comput Phys 230(7):2540–2561

    Article  MathSciNet  MATH  Google Scholar 

  136. Leung S, Zhao H (2009) A grid based particle method for moving interface problems. J Comput Phys 228(8):2993–3024

    Article  MathSciNet  MATH  Google Scholar 

  137. Li Z, Jaberi F, Shih T (2008) A hybrid Lagrangian–Eulerian particle-level set method for numerical simulations of two-fluid turbulent flows. Int J Numer Methods Fluids 56:2271–2300

    Article  MathSciNet  MATH  Google Scholar 

  138. Li Z, Lai MC (2001) The immersed interface method for the Navier–Stokes equations with singular forces. J Comput Phys 171(2):822–842

    Article  MathSciNet  MATH  Google Scholar 

  139. Liovic P, Francois M, Rudman M, Manasseh R (2010) Efficient simulation of surface tension-dominated flows through enhanced interface geometry interrogation. J Comput Phys 229:7520–7544

    Article  MathSciNet  MATH  Google Scholar 

  140. Liu H, Zhang Y (2010) Phase-field modeling droplet dynamics with soluble surfactants. J Comput Phys 229(24):9166–9187

    Article  MATH  Google Scholar 

  141. Lopez E, Nigro N, Storti M (2008) Simultaneous untangling and smoothing of moving grids. Int J Numer Methods Eng 76(7):994–1019

    Article  MathSciNet  MATH  Google Scholar 

  142. López J, Hernández J, Gómez P, Faura F (2004) A volume of fluid method based on multidimensional advection and spline interface reconstruction. J Comput Phys 195:718–742

    Article  MATH  Google Scholar 

  143. López J, Zanzi C, Gómez P, Zamora R, Faura F, Hernández J (2009) An improved height function technique for computing interface curvature from volume fractions. Comp Methods Appl Mech Eng 198(33):2555–2564

    Article  MATH  Google Scholar 

  144. Loubère R, Maire P, Shashkov M, Breil J, Galera S (2010) Reale: a reconnection-based Arbitrary–Lagrangian–Eulerian method. J Comput Phys 229(12):4724–4761

    Article  MathSciNet  MATH  Google Scholar 

  145. Lowengrub J, Xu JJ, Voigt A (2007) Surface phase separation and flow in a simple model of multicomponent drops and vesicles. Fluid Dyn Mater Process 3(1):1–20

    MathSciNet  MATH  Google Scholar 

  146. Lucas K (2007) Thermodynamik. Springer, Berlin

    Google Scholar 

  147. Luppes R, Veldman A, Wemmenhove R (2011) Simulation of two-phase flow in sloshing tanks. In: Damsgaard A (ed) Computational fluid dynamics. Springer, Berlin, pp 555–561

  148. Lynch D, Gray W (1980) Finite element simulation of flow in deforming regions. J Comput Phys 36:135–153

    Article  MathSciNet  MATH  Google Scholar 

  149. Marchandise E, Geuzaine P, Chevaugeon N, Remacle JF (2007) A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics. J Comput Phys 225(1):949–974

    Article  MathSciNet  MATH  Google Scholar 

  150. Marek M, Aniszewski W, Boguslawski A (2008) Simplified volume of fluid method (SVOF) for two-phase flows. TASK Q 12(3):255–265

    Google Scholar 

  151. Marschall H, Boden S, Lehrenfeld C, Hampel U, Reusken A, Wörner M, Bothe D (2014) Validation of interface capturing and tracking techniques with different surface tension treatments against a taylor bubble benchmark problem. Comput Fluids 102:336–352

    Article  Google Scholar 

  152. Masud A, Hughes T (1997) A space–time Galerkin/least-squares finite element formulation of the Navier–Stokes equations for moving domain problems. Comput Methods Appl Mech Eng 146:91–126

    Article  MathSciNet  MATH  Google Scholar 

  153. Matsui T, Nagaya T (2013) Nonlinear sloshing in a floating-roofed oil storage tank under long-period seismic ground motion. Earthq Eng Struct Dynam 42:973–991

    Article  Google Scholar 

  154. McKee S, Tomé M, Cuminato J, Castelo A, Ferreira V (2004) Recent advances in the marker and cell method. Arch Comput Mech Eng 11(2):107–142

    Article  MathSciNet  MATH  Google Scholar 

  155. Meier M, Yadigaroglu G, Smith B (2002) A novel technique for including surface tension in PLIC–VOF methods. Eur J Mech B Fluids 21:61–73

    Article  MATH  Google Scholar 

  156. Mencinger J, Zun I (2011) A PLIC–VOF method suited for adaptive moving grids. J Comput Phys 230:644–663

    Article  MathSciNet  MATH  Google Scholar 

  157. Michel JB, Shen YK, Aiden AP, Veres A, Gray MK, The Google Books Team, Pickett JP, Hoiberg D, Clancy D, Norvig P, Orwant J, Nowak MA, Aiden EL (2011) Quantitative analysis of culture using millions of digitized books. Science 331(6014):176–182

  158. Mier-Torrecilla M, Idelsohn S, Oñate E (2011) Advances in the simulation of multi-fluid flows with the particle finite element method. Application to bubble dynamics. Int J Numer Methods Fluids 67:1516–1539

    Article  MathSciNet  MATH  Google Scholar 

  159. Minev P, Chen T, Nandakumar K (2003) A finite element technique for multifluid incompressible flow using Eulerian grids. J Comput Phys 187(1):255–273

    Article  MathSciNet  MATH  Google Scholar 

  160. Mittal S, Tezduyar T (1992) A finite element study of incompressible flows past oscillating cylinders and airfoils. Int J Numer Methods Fluids 15:1073–1118

    Article  Google Scholar 

  161. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MATH  Google Scholar 

  162. Mompean G, Thais L, Tomé M, Castelo A (2011) Numerical prediction of three-dimensional time-dependent viscoelastic extrudate swell using differential and algebraic models. Comput Fluids 44:68–78

    Article  MathSciNet  MATH  Google Scholar 

  163. Mut F, Buscaglia G, Dari E (2006) New mass-conserving algorithm for level set redistancing on unstructured meshes. J Appl Mech ASME 73(6):1011–1016

    Article  MathSciNet  MATH  Google Scholar 

  164. Nichols B, Hirt C (1971) Improved free surface boundary conditions for numerical incompressible-flow calculations. J Comput Phys 8(3):434–448

    Article  MathSciNet  MATH  Google Scholar 

  165. Noh W, Woodward P (1976) SLIC (Simple Line Interface Calculation). Lect Notes Phys 59:330–340

    Article  MATH  Google Scholar 

  166. Oñate E, García J (2001) A finite element method for fluid–structure interaction with surface waves using a finite calculus formulation. Comput Methods Appl Mech Eng 191:635–660

    Article  MATH  Google Scholar 

  167. Oñate E, Idelsohn S, Pin FD, Aubry R (2004) The particle finite element method: an overview. Int J Comput Methods 1(2):267–307

    Article  MATH  Google Scholar 

  168. Okamoto T, Kawahara M (1990) Two-dimensional sloshing analysis by Lagrangian finite element method. Int J Numer Methods Fluids 11:453–477

    Article  MATH  Google Scholar 

  169. Olshanskii M, Reusken A, Grande J (2009) A finite element method for elliptic equations on surfaces. SIAM 47(5):3339–3358

    MathSciNet  MATH  Google Scholar 

  170. Olsson E, Kreiss G, Zahedi S (2007) A conservative level set method for two phase flow II. J Comput Phys 225:785–807

    Article  MathSciNet  MATH  Google Scholar 

  171. Onsager L (1931) Reciprocal relations in irreversible processes. Phys Rev 37(4):405

  172. Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Applied Mathematical Sciences. Springer, New York

    Book  MATH  Google Scholar 

  173. Osher S, Sethian J (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton Jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  174. Ozdemir Z, Souli M, Fahjan Y (2010) FSI methods for seismic analysis of sloshing tank problems. Mech Indus 11:133–147

    Google Scholar 

  175. Pasenow F, Zilian A, Dinkler D (2012) XFEM coupling of granular flows interacting with surrounding fluids. In: ECCOMAS 2012-European congress on computational methods in applied sciences and engineering, e-Book Full Papers

  176. Pauli L, Behr M, Elgeti S (2012) Towards shape optimization of extrusion dies with respect to homogeneous die swell. J Nonnewton Fluid Mech 69:73–87

    MathSciNet  MATH  Google Scholar 

  177. Peng D, Merriman B, Osher S, Zhao H, Kang M (1999) A PDE-based fast local level set method. J Comput Phys 155(2):410–438

    Article  MathSciNet  MATH  Google Scholar 

  178. Piegel L, Tiller W (1997) The NURBS book. Springer, Berlin

    Book  Google Scholar 

  179. Pilliod J, Puckett E (2004) Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J Comput Phys 199:465–502

    Article  MathSciNet  MATH  Google Scholar 

  180. Plewa T, Linde T, Weirs V (2005) Adaptive mesh refinement—theory and applications. In: Proceedings of the Chicago workshop on adaptive mesh refinement methods, Sept. 3–5, 2003. Lecture Notes in Computational Science and Engineering. Springer, Berlin

  181. Prigogine I (1966) Non-equilibrium statistical mechanics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  182. Probst M (2013) Robust shape optimization for incompressible flow of shear-thinning fluids. Ph.D. thesis, RWTH Aachen University

  183. Radovitzky R, Ortiz M (1998) Lagrangian finite element analysis of Newtonian fluid flows. Int J Numer Methods Eng 43(4):607–619

    Article  MathSciNet  MATH  Google Scholar 

  184. Raessi M, Mostaghimi J, Bussmann M (2010) A volume-of-fluid interfacial flow solver with advected normals. Comput Fluids 39(8):1401–1410

    Article  MathSciNet  MATH  Google Scholar 

  185. Rasthofer U, Henke F, Wall W, Gravemeier V (2011) An extended residual-based variational multiscale method for two-phase flow including surface tension. Comput Methods Appl Mech Eng 200(21–22):1866–1876

    Article  MathSciNet  MATH  Google Scholar 

  186. Reusken A (2008) Analysis of an extended pressure finite element space for two-phase incompressible flows. Comput Vis Sci 11:293–305

    Article  MathSciNet  Google Scholar 

  187. Reusken A, Loch E (2011) On the accuracy of the level set supg method for approximating interfaces. Technical report, Institut für Geometrie und Praktische Mathematik

  188. Rider W, Kothe D (1998) Reconstructing volume tracking. J Comput Phys 141:112–152

    Article  MathSciNet  MATH  Google Scholar 

  189. Rogers D (2001) An introduction to NURBS with historical perspective. Morgan Kaufmann Publishers, Los Altos

    Google Scholar 

  190. Santos F, Ferreira V, Tomé M, Castelo A, Mangiavacchi N, McKee S (2012) A marker-and-cell approach to free surface 2-d multiphase flows. Int J Numer Methods Fluids 70:1543–1557

    Article  MathSciNet  Google Scholar 

  191. Sauerland H (2013) An XFEM based sharp interface approach for two-phase and free-surface flows. Ph.D. thesis, RWTH Aachen University

  192. Sauerland H, Fries T (2011) The extended finite element method for two-phase and free-surface flows. J Comput Phys 230(9):3369–3390

    Article  MathSciNet  MATH  Google Scholar 

  193. Schroeder C, Zheng W, Fedkiw R (2012) Semi-implicit surface tension formulation with a Lagrangian surface mesh on an eulerian simulation grid. J Comput Phys 231:2092–2115

    Article  MathSciNet  MATH  Google Scholar 

  194. Sevilla R, Fernandez-Mendez S, Huerta A (2008) NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng 76(1):56–83

    Article  MathSciNet  MATH  Google Scholar 

  195. Sevilla R, Fernandez-Mendez S, Huerta A (2011) 3D NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng 88:103–125

    Article  MathSciNet  MATH  Google Scholar 

  196. Sevilla R, Fernandez-Mendez S, Huerta A (2011) NURBS-enhanced finite element method (NEFEM): a seamless bridge between CAD and FEM. Arch Comput Mech Eng 18(4):441–484

    Article  MathSciNet  MATH  Google Scholar 

  197. Silliman W, Scriven L (1978) Slip of liquid inside a channel exit. Phys Fluids 21(11):2115–2116

    Article  Google Scholar 

  198. Singer-Loginova I, Singer H (2008) The phase field technique for modeling multiphase materials. Rep Prog Phys 71(10):106501

  199. Siquieri R, Emmerich H (2011) Phase-field investigation of microstructure evolution under the influence of convection. Philos Mag 91(1):45–73

    Article  Google Scholar 

  200. Sliwiak AA (2014) Free-surface description in a sloshing tank with deformable shape. Bachelor’s thesis

  201. Sousa F, Ausas R, Buscaglia G (2012) Numerical assessment of stability of interface discontinuous finite element pressure spaces. Comput Methods Appl Mech Eng 245:63–74

    Article  MathSciNet  Google Scholar 

  202. Stavrev A, Knechtges P, Elgeti S, Huerta A (2015) Space–time nurbs-enhanced finite elements for free-surface flows in 2d. Int J Numer Methods Fluids (submitted)

  203. Steinbach I (2009) Phase-field models in materials science. Model Simul Mater Sci Eng 17(7):073001

  204. Sussman M (2003) A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J Comput Phys 187:110–136

    Article  MathSciNet  MATH  Google Scholar 

  205. Sussman M, Almgren A, Bell J, Howell PCLH, Welcomey ML (1999) An adaptive level set approach for incompressible two-phase flows. J Comput Phys 148:81–124

    Article  MathSciNet  MATH  Google Scholar 

  206. Sussman M, Puckett E (2000) A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows. J Comput Phys 162:301–337

    Article  MathSciNet  MATH  Google Scholar 

  207. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94(3):339–351

    Article  MathSciNet  MATH  Google Scholar 

  208. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371

    Article  MathSciNet  MATH  Google Scholar 

  209. Tomé M, Castelo A, Afonso A, Alves M, Pinho F (2012) Application of the log-conformation tensor to three-dimensional time-dependent free surface flows. J Non-Newtonian Fluid Mech 175:44–54

  210. Tomé M, Castelo A, Cuminato J, Mangiavacchi N, Ferreira V (2001) Gensmac3d: a numerical method for solving unsteady three-dimensional free surface flows. Int J Numer Methods Fluids 37:747–796

    Article  MATH  Google Scholar 

  211. Tomé M, Castelo A, Ferreira V, McKee S (2008) A finite difference technique for solving the Oldroyd-B model for 3D-unsteady free surface flows. J Nonnewton Fluid Mech 154:179–206

    Article  Google Scholar 

  212. Tomé M, McKee S (1994) Gensmac: A computational marker and cell method for the free surface flows in general domains. J Comput Phys 110:171–186

    Article  MATH  Google Scholar 

  213. Torres D, Brackbill J (2000) The point-set method: front-tracking without connectivity. J Comput Phys 180:427–470

    MATH  Google Scholar 

  214. Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Taubner W, Han J, Nas S, Jan Y (2001) A front-tracking method for the computations of multi-phase flow. J Comput Phys 169(2):708–759

    Article  MATH  Google Scholar 

  215. Vaikuntam A (2008) Numerical estimation of surface parameters by level set methods. Ph.D. thesis, University of Kaiserslautern

  216. Wall W (1999) Fluid–Struktur-Interaktion mit stabilisierten Finiten Elementen. Ph.D. thesis, University of Stuttgart

  217. Wang X, Li X (2010) Numerical simulation of three dimensional non-Newtonian free surface flows in injection molding using ALE finite element method. Finite Elem Anal Des 46(7):551–562

    Article  Google Scholar 

  218. Wang Z, Yang J, Stern F (2012) A new volume-of-fluid method with a constructed distance function on general structured grids. J Comput Phys 231:3703–3722

    Article  MathSciNet  MATH  Google Scholar 

  219. Williams M (2000) Numerical methods for tracking interfaces with surface tension in 3d mold filling processes. Ph.D. thesis, University of California, Davis

  220. Xiao F, Honma Y, Kono T (2005) A simple algebraic interface capturing scheme using hyperbolic tangent function. Int J Numer Methods Fluids 48:1023–1040

    Article  MATH  Google Scholar 

  221. Xu JJ, Zhao HK (2003) An Eulerian formulation for solving partial differential equations along a moving interface. J Sci Comput 19(1):573–594

    Article  MathSciNet  MATH  Google Scholar 

  222. Yokoi K (2007) Efficient implementation of THINC scheme: a simple and practical smoothed VOF algorithm. J Comput Phys 226(2):1985–2002

    Article  MathSciNet  MATH  Google Scholar 

  223. Youngs D (1984) An interface tracking method for a 3D Eulerian hydrodynamics code. Technical Report 44/92/35, AWRE

  224. Zheng W, Zhu B, Kim B, Fedkiw R (2010) A new incompressibility discretization for a hybrid mac grid representation with surface tension. Int J Numer Methods Fluids 62(9):963–993

    Google Scholar 

  225. Zlotnik S, Díez P (2009) Hierarchical X-FEM for n-phase flow (\(n>2\)). Comput Methods Appl Mech Eng 198(30–32):2329–2338

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the German Research Foundation (DFG) through the SFB 1120 “Thermal Precision”, the Emmy-Noether-research group “Numerical methods for discontinuities in continuum mechanics”, and the DFG program GSC 111 (AICES Graduate School). The computations were conducted on computing clusters provided by the Jülich Aachen Research Alliance (JARA). Furthermore, we would like to thank Philipp Knechtges for the infinite patience with which he shared his mathematical insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Elgeti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elgeti, S., Sauerland, H. Deforming Fluid Domains Within the Finite Element Method: Five Mesh-Based Tracking Methods in Comparison. Arch Computat Methods Eng 23, 323–361 (2016). https://doi.org/10.1007/s11831-015-9143-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-015-9143-2

Navigation