Skip to main content
Log in

On the analysis of heterogeneous fluids with jumps in the viscosity using a discontinuous pressure field

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Heterogeneous incompressible fluid flows with jumps in the viscous properties are solved with the particle finite element method using continuous and discontinuous pressure fields. We show the importance of using discontinuous pressure fields to avoid errors in the incompressibility condition near the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sommerfeld M, van Wachem B, Oliemans R (eds) (2007) ERCOFTAC Special Interest Group on Dispersed Turbulent Multi-Phase Flow, Best Practice Guidelines

  2. Tezduyar TE (1999) CFD methods for three-dimensional computation of complex flow problems. J Wind Eng Ind Aerodyn 81: 97–116

    Article  Google Scholar 

  3. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian– Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 239–349

    Article  MathSciNet  Google Scholar 

  4. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space-time procedure: I. The concept and preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351

    Article  MATH  MathSciNet  Google Scholar 

  5. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371

    Article  MATH  MathSciNet  Google Scholar 

  6. Sethian JA (2001) Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J Comput Phys 169: 503–555

    Article  MATH  MathSciNet  Google Scholar 

  7. Osher S, Fedkiw RP (2001) Level set methods: an overview and some recent results. J Comput Phys 169: 463–502

    Article  MATH  MathSciNet  Google Scholar 

  8. Guermond JL, Quartapelle L (2000) A projection FEM for variable density incompressible flows. J Comput Phys 165: 167–188

    Article  MATH  MathSciNet  Google Scholar 

  9. Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155: 235–248

    Article  MATH  Google Scholar 

  10. Tezduyar TE, Aliabadi S (2000) EDICT for 3D computation of two-fluid interfaces. Comput Methods Appl Mech Eng 190: 403–410

    Article  MATH  Google Scholar 

  11. Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7): 964–989

    Article  MATH  Google Scholar 

  12. Oñate E, Idelsohn SR, del Pin F, Aubry R (2004) The particle finite element method: an overview. Int J Comput Methods 1(2): 267–307

    Article  MATH  Google Scholar 

  13. Idelsohn SR, Oñate E, Del Pin F, Calvo N (2006) Fluid-structure interaction using the particle finite element method. Comput Methods Appl Mech Eng 195(17–18): 2100–2123

    Article  MATH  Google Scholar 

  14. Idelsohn SR, Mier-Torrecilla M, Oñate E (2009) Multi-fluid flows with the particle finite element method. Comput Methods Appl Mech Eng 198: 2750–2767

    Article  Google Scholar 

  15. Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100: 25–37

    Article  MATH  Google Scholar 

  16. Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31: 567–603

    Article  MathSciNet  Google Scholar 

  17. Smolianski A (2005) Finite-Element/Level-Set/Operator-Splitting (FELSOS) approach for computing two-fluid unsteady flows with free moving interfaces. Int J Numer Methods Fluids 48: 231–269

    Article  MATH  MathSciNet  Google Scholar 

  18. Li Z, Lubkin S (2001) Numerical analysis of interfacial two-dimensional Stokes flow with discontinuous viscosity and variable surface tension. Int J Numer Methods Fluids 37: 525–540

    Article  MATH  MathSciNet  Google Scholar 

  19. Minev PD, Chen T, Nandakumar K (2003) A finite element technique for multifluid incompressible flow using Eulerian grids. J Comput Phys 187: 255–273

    Article  MATH  MathSciNet  Google Scholar 

  20. Gross S, Reusken A (2007) An extended pressure finite element space for two-phase incompressible flows with surface tension. J Comput Phys 224: 40–58

    Article  MATH  MathSciNet  Google Scholar 

  21. Hyman JM (1984) Numerical methods for tracking interfaces. Phys D Nonlinear Phenom 12: 396–407

    Article  MATH  Google Scholar 

  22. Floryan JM, Rasmussen H (1989) Numerical methods for viscous flows with moving boundaries. Appl Mech Rev 42: 323–337

    Article  MathSciNet  Google Scholar 

  23. Codina R, Blasco J (2000) Stabilized finite element method for the transient Navier–Stokes equations based on a pressure gradient projection. Comput Methods Appl Mech Eng 182: 277–300

    Article  MATH  MathSciNet  Google Scholar 

  24. Oñate E (2000) A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput Methods Appl Mech Eng 182: 355–370

    Article  MATH  Google Scholar 

  25. Kang M, Fedkiw RP, Liu XD (2000) A boundary condition capturing method for multiphase incompressible flow. J Sci Comput 15: 323–360

    Article  MATH  MathSciNet  Google Scholar 

  26. Ganesan S, Matthies G, Tobiska L (2007) On spurious velocities in incompressible flow problem with interfaces. Comput Methods Appl Mech Eng 196: 1193–1202

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio R. Idelsohn.

Additional information

S. R. Idelsohn is a ICREA Research Professor at CIMNE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Idelsohn, S.R., Mier-Torrecilla, M., Nigro, N. et al. On the analysis of heterogeneous fluids with jumps in the viscosity using a discontinuous pressure field. Comput Mech 46, 115–124 (2010). https://doi.org/10.1007/s00466-009-0448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0448-6

Keywords

Navigation