Skip to main content
Log in

Practical Application of the Stochastic Finite Element Method

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The stochastic finite element method is an extension of the FEM that considers the uncertainty of a system that arises through variations in initial conditions, materials or geometry. Systems which display a measurable degree of disorder can be studied efficiently using a probabilistic approach. Different scenarios can be randomly generated with the SFEM to study the behaviour of systems that take into account prior knowledge of the differing variations in properties. This review paper introduces the most commonly used techniques: direct Monte Carlo simulation, the perturbation method and the spectral stochastic finite element method. It then looks at the currently available software for the SFEM and provides examples from the disciplines of materials science, biomechanics and engineering to illustrate different procedures by which the SFEM is practically used. The aim of the paper is to help scientists and engineers quickly assess how they might apply SFEM to their own research and guide them towards key publications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hughes I, Hase TPA (2010) Measurements and their uncertainties: a practical guide to modern error analysis. Oxford University Press, Oxford

    MATH  Google Scholar 

  2. Schueller GI (2006) Developments in stochastic structural mechanics. Arch Appl Mech 75(10–12):755–773. doi:10.1007/s00419-006-0067-z

    Article  MATH  Google Scholar 

  3. Hurtado JE, Barbat AH (1998) Monte Carlo techniques in computational stochastic mechanics. Arch Comput Method Eng 5(1):3–29. doi:10.1007/Bf02736747

    Article  MathSciNet  Google Scholar 

  4. Moens D, Vandepitte D (2006) Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis. Arch Comput Methods Eng 13(3):389–464. doi:10.1007/Bf02736398

    Article  MATH  MathSciNet  Google Scholar 

  5. Timoshenko SP (1958) Strength of materials, 3rd edn. Van Nostrand, Princeton

    MATH  Google Scholar 

  6. Young WC, Budynas RG, Sadegh AM, Roark RJ (2012) (eds) Roark’s formulas for stress and strain. 8th edn. McGraw-Hill, New York

  7. Der Kiureghian A, Ke J-B (1988) The stochastic finite element method in structural reliability. Probab Eng Mech 3(2):83–91. doi:10.1016/0266-8920(88)90019-7

    Article  Google Scholar 

  8. Contreras H (1980) The stochastic finite-element method. Comput Struct 12(3):341–348. doi:10.1016/0045-7949(80)90031-0

    Article  MATH  MathSciNet  Google Scholar 

  9. Cassidy MJ, Uzielli M, Tian YH (2013) Probabilistic combined loading failure envelopes of a strip footing on spatially variable soil. Comput Geotech 49:191–205. doi:10.1016/j.compgeo.2012.10.008

    Article  Google Scholar 

  10. Fenton GA, Griffiths DV (2008) Risk assessment in geotechnical engineering. Wiley, Hoboken

    Book  Google Scholar 

  11. Liu WK, Belytschko T, Mani A (1986) Random field finite-elements. Int J Numer Methods Eng 23(10):1831–1845. doi:10.1002/nme.1620231004

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu WK, Mani A, Belytschko T (1987) Finite element methods in probabilistic mechanics. Probab Eng Mech 2(4):201–213. doi:10.1016/0266-8920(87)90010-5

    Article  Google Scholar 

  13. Sudret B, Der Kiureghian A (2000) Stochastic finite element methods and reliability: a state-of-the-art report (trans: Engineering DoCE). University of California, Berkeley

    Google Scholar 

  14. To CSS (2001) On computational stochastic structural dynamics applying finite elements. Arch Comput Methods Eng 8(1):3–40. doi:10.1007/Bf02736683

  15. Vanmarcke E, Shinozuka M, Nakagiri S, Schueller GI, Grigoriu M (1986) Random-fields and stochastic finite-elements. Struct Saf 3(3–4):143–166. doi:10.1016/0167-4730(86)90002-0

    Article  Google Scholar 

  16. Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198(9–12):1031–1051. doi:10.1016/j.cma.2008.11.007

  17. Schueller GI (1997) Special issue—a state-of-the-art report on computational stochastic mechanics. Probab Eng Mech 12(4):197–321

    Article  Google Scholar 

  18. Pellissetti MF, Schueller GI (2006) On general purpose software in structural reliability: an overview. Struct Saf 28(1–2):3–16. doi:10.1016/j.stursafe.2005.03.004

    Article  Google Scholar 

  19. Soize C (2013) Stochastic modeling of uncertainties in computational structural dynamics—recent theoretical advances. J Sound Vib 332(10):2379–2395. doi:10.1016/j.jsv.2011.10.010

    Article  Google Scholar 

  20. Astill CJ, Imosseir SB, Shinozuka M (1972) Impact loading on structures with random properties. J Struct Mech 1(1):63–77. doi:10.1080/03601217208905333

    Article  Google Scholar 

  21. Ghanem R, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New York

    Book  MATH  Google Scholar 

  22. Vanmarcke E (1983) Random fields: analysis and synthesis. MIT Press, London

    MATH  Google Scholar 

  23. Vanmarcke E, Grigoriu M (1983) Stochastic finite-element analysis of simple beams. J Eng Mech-Asce 109(5):1203–1214

    Article  Google Scholar 

  24. Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Probab 5(3):439–468. doi:10.2307/1425829

  25. Yaglom AM (1962) An introduction to the theory of stationary random functions, Rev. English/translated and edited by Richard A. Silverman (edn) Prentice-Hall, Englewood Cliffs

  26. Fenton GA, Vanmarcke EH (1990) Simulation of random-fields via local average subdivision. J Eng Mech-Asce 116(8):1733–1749. doi:10.1061/(Asce)0733-9399(1990)116:8(1733)

    Article  Google Scholar 

  27. Sriramula S, Chryssanthopoulos MK (2009) Quantification of uncertainty modelling in stochastic analysis of FRP composites. Compos Part A Appl Sci 40(11):1673–1684. doi:10.1016/j.compositesa.2009.08.020

    Article  Google Scholar 

  28. Charmpis DC, Schueller GI, Pellissetti MF (2007) The need for linking micromechanics of materials with stochastic finite elements: A challenge for materials science. Comput Mater Sci 41(1):27–37. doi:10.1016/j.commatsci.2007.02.014

  29. Jimenez R, Sitar N (2009) The importance of distribution types on finite element analyses of foundation settlement. Comput Geotech 36(3):474–483. doi:10.1016/j.compgeo.2008.05.003

    Article  Google Scholar 

  30. Jeulin D (2000) Random texture models for material structures. Stat Comput 10(2):121–132

    Article  Google Scholar 

  31. Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Interdisciplinary applied mathematics vol. 16. Springer, New York

    Book  MATH  Google Scholar 

  32. Yeong CLY, Torquato S (1998) Reconstructing random media. II. Three-dimensional media from two-dimensiomal cuts. Phys Rev E 58(1):224–233. doi:10.1103/PhysRevE.58.224

    Article  MathSciNet  Google Scholar 

  33. Feng JW, Li CF, Cen S, Owen DRJ Statistical reconstruction of two-phase random media. Comput Struct. doi:10.1016/j.compstruc.2013.03.019

  34. Eschricht N, Hoinkis E, Madler F, Schubert-Bischoff P, Rohl-Kuhn B (2005) Knowledge-based reconstruction of random porous media. J Colloid Interface Sci 291(1):201–213. doi:10.1016/j.jcis.2005.05.004

    Article  Google Scholar 

  35. Ostoja-Starzewski M (2008) Microstructural randomness and scaling in mechanics of materials. Chapman & Hall/CRC, London

    MATH  Google Scholar 

  36. Schueller GI, Pradlwarter HJ (2009) Uncertain linear systems in dynamics: retrospective and recent developments by stochastic approaches. Eng Struct 31(11):2507–2517. doi:10.1016/j.engstruct.2009.07.005

    Article  Google Scholar 

  37. Haldar A, Mahadevan S (2000) Reliability assessment using stochastic finite element analysis. Wiley, New York

    Google Scholar 

  38. Schuëller GI, Pradlwarter HJ (2007) Benchmark study on reliability estimation in higher dimensions of structural systems—an overview. Struct Saf 29(3):167–182. doi:10.1016/j.strusafe.2006.07.010

    Article  Google Scholar 

  39. Papadrakakis M, Kotsopulos A (1999) Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation. Comput Methods Appl Mech 168(1–4):305–320. doi:10.1016/S0045-7825(98)00147-9

    Article  MATH  Google Scholar 

  40. Schueller GI (2001) Computational stochastic mechanics—recent advances. Comput Struct 79(22–25):2225–2234. doi:10.1016/S0045-7949(01)00078-5

    Article  Google Scholar 

  41. Johnson EA, Wojtkiewicz SF, Bergman LA, Spencer BF (1997) Observations with regard to massively parallel computation for Monte Carlo simulation of stochastic dynamical systems. Int J Nonlinear Mech 32(4):721–734. doi:10.1016/S0020-7462(96)00097-2

    Article  MATH  Google Scholar 

  42. Ariaratnam ST, Schueller GI, Elishakoff I (1988) Stochastic structural dynamics: progress in theory and applications. Elsevier Applied Science, London

    MATH  Google Scholar 

  43. Elishakoff I, Ren Y (2003) Finite element methods for structures with large stochastic variations. Oxford texts in applied and engineering mathematics, vol 7. Oxford University Press, Oxford

    Google Scholar 

  44. Kleiber M, Tran DH (1992) The stochastic finite element method: basic perturbation technique and computer implementation. Wiley, London

    MATH  Google Scholar 

  45. Ghanem RG, Kruger RM (1996) Numerical solution of spectral stochastic finite element systems. Comput Method Appl Mech Eng 129(3):289–303. doi:10.1016/0045-7825(95)00909-4

  46. Nouy A (2009) Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch Comput Methods Eng 16(3):251–285. doi:10.1007/s11831-009-9034-5

    Article  MathSciNet  Google Scholar 

  47. Ghanem R (1999) Ingredients for a general purpose stochastic finite elements implementation. Comput Methods Appl Mech Eng 168(1–4):19–34. doi:10.1016/S0045-7825(98)00106-6

    Article  MATH  MathSciNet  Google Scholar 

  48. Frauenfelder P, Schwab C, Todor RA (2005) Finite elements for elliptic problems with stochastic coefficients. Comput Methods Appl Mech Eng 194(2–5):205–228. doi:10.1016/j.cma.2004.04.008

    Article  MATH  MathSciNet  Google Scholar 

  49. Schwab C, Todor RA (2006) Karhunen–Loeve approximation of random fields by generalized fast multipole methods. J Comput Phys 217(1):100–122. doi:10.1016/j.jcp.2006.01.048

    Article  MATH  MathSciNet  Google Scholar 

  50. Phoon KK, Huang SP, Quek ST (2002) Implementation of Karhunen–Loeve expansion for simulation using a wavelet-Galerkin scheme. Probab Eng Mech 17(3):293–303. doi:10.1016/S0266-8920(02)00013-9

    Article  Google Scholar 

  51. Ghanem R (1998) Hybrid stochastic finite elements and generalized Monte Carlo simulation. J Appl Mech-T Asme 65(4):1004–1009

    Article  Google Scholar 

  52. Blatman G, Sudret B (2008) Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach. Comptes Rendus Mecanique 336(6):518–523. doi:10.1016/j.crme.2008.02.013

    Article  MATH  Google Scholar 

  53. Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys 230(6):2345–2367. doi:10.1016/j.jcp.2010.12.021

    Article  MATH  MathSciNet  Google Scholar 

  54. Pascual B, Adhikari S (2012) A reduced polynomial chaos expansion method for the stochastic finite element analysis. Sadhana 37(3):319–340

    Article  MathSciNet  MATH  Google Scholar 

  55. Pradlwarter HJ, Schueller GI (1997) On advanced Monte Carlo simulation procedures in stochastic structural dynamics. Int J Nonlinear Mech 32(4):735–744. doi:10.1016/S0020-7462(96)00091-1

    Article  MATH  Google Scholar 

  56. Schueller GI, Pradlwarter HJ, Bucher CG (1991) Efficient computational procedures for reliability estimates of MDOF-systems. Int J Nonlinear Mech 26(6):961–974. doi:10.1016/0020-7462(91)90044-T

    Article  MATH  Google Scholar 

  57. Melchers RE (1999) Structural reliability: analysis and prediction, 2nd edn. Wiley, Chichester

    Google Scholar 

  58. Patelli E, Panayirci HM, Broggi M, Goller B, Beaurepaire P, Pradlwarter HJ, Schueller GI (2012) General purpose software for efficient uncertainty management of large finite element models. Finite Elem Anal Des 51:31–48. doi:10.1016/j.finel.2011.11.003

    Article  Google Scholar 

  59. Smith IM, Griffiths DV (2004) Programming the finite element method, 4th edn. Wiley, Hoboken

    MATH  Google Scholar 

  60. Margetts L (2002) Parallel finite element analysis. University of Manchester, Manchester

    Google Scholar 

  61. Smith IM, Margetts L (2006) The convergence variability of parallel iterative solvers. Eng Comput 23(1–2):154–165. doi:10.1108/02644400610644522

    Article  MATH  Google Scholar 

  62. Smith IM, Griffiths DV, Margetts L (2013) Programming the finite element method, 5th edn. Wiley, London

    MATH  Google Scholar 

  63. Abaqus: keywords manual: version 6.2 (2001) Pawtucket: Hibbitt. Karlsson & Sorensen, Pawtucket

  64. Shang S, Yun GJ (2012) Stochastic finite element with material uncertainties: implementation in a general purpose simulation program. Finite Elem Anal Des 64:65–78. doi:10.1016/j.finel.2012.10.001

    Article  MathSciNet  MATH  Google Scholar 

  65. Eiermann M, Ernst O, Ullmann E (2007) Computational aspects of the stochastic finite element method. Comput Vis Sci 10(1):3–15. doi:10.1007/s00791-006-0047-4

  66. Reh S, Beley JD, Mukherjee S, Khor EH (2006) Probabilistic finite element analysis using ANSYS. Struct Saf 28(1–2):17–43. doi:10.1016/j.strusafe.2005.03.010

    Article  Google Scholar 

  67. Der Kiureghian A, Haukaas T, Fujimura K (2006) Structural reliability software at the University of California, Berkeley. Struct Saf 28(1–2):44–67. doi:10.1016/j.strusafe.2005.03.002

    Article  Google Scholar 

  68. Schueller GI, Pradlwarter HJ (2006) Computational stochastic structural analysis (COSSAN)—a software tool. Struct Saf 28(1–2):68–82. doi:10.1016/j.strusafe.2005.03.005

  69. Pellissetti MF, Schueller GI (2009) Scalable uncertainty and reliability analysis by integration of advanced Monte Carlo simulation and generic finite element solvers. Comput Struct 87(13–14):930–947. doi:10.1016/j.compstruc.2009.04.003

    Article  Google Scholar 

  70. Thacker BH, Riha DS, Fitch SHK, Huyse LJ, Pleming JB (2006) Probabilistic engineering analysis using the NESSUS software. Struct Saf 28(1–2):83–107. doi:10.1016/j.strusafe.2004.11.003

    Article  Google Scholar 

  71. Gollwitzer S, Kirchgassner B, Fischer R, Rackwitz R (2006) PERMAS-RA/STRUREL system of programs for probabilistic reliability analysis. Struct Saf 28(1–2):108–129. doi:10.1016/j.strusafe.2005.03.008

    Article  Google Scholar 

  72. Lemaire M, Pendola M (2006) Phimeca-soft. Struct Saf 28(1–2):130–149. doi:10.1016/j.strusafe.2005.03.007

  73. Tvedt L (2006) Proban—probabilistic analysis. Struct Saf 28(1–2):150–163. doi:10.1016/j.strusafe.2005.03.003

  74. Wu YT, Shin Y, Sues RH, Cesare MA (2006) Probabilistic function evaluation system (ProFES) for reliability-based design. Struct Saf 28(1–2):164–195. doi:10.1016/j.strusafe.2005.03.006

  75. Lin HZ, Khalessi MR (2006) General outlook of UNIPASS (TM) V5.0: a general-purpose probabilistic software system. Struct Saf 28(1–2):196–216. doi:10.1016/j.strusafe.2005.03.009

    Article  Google Scholar 

  76. Spanos PD, Kontsos A (2008) A multiscale Monte Carlo finite element method for determining mechanical properties of polymer nanocomposites. Probab Eng Mech 23(4):456–470. doi:10.1016/j.probengmech.2007.09.002

    Article  Google Scholar 

  77. Johnson J, Qu J (2008) Effective modulus and coefficient of thermal expansion of Ni–YSZ porous cermets. J Power Sources 181(1):85–92. doi:10.1016/j.jpowsour.2008.03.035

    Article  Google Scholar 

  78. Sakata S, Ashida F, Ohsumimoto K (2013) Stochastic homogenization analysis of a porous material with the perturbation method considering a microscopic geometrical random variation. Int J Mech Sci 77:145–154. doi:10.1016/j.ijmecsci.2013.10.001

  79. Asprone D, Auricchio F, Menna C, Morganti S, Prota A, Reali A (2013) Statistical finite element analysis of the buckling behavior of honeycomb structures. Compos Struct 105:240–255. doi:10.1016/j.compstruct.2013.05.014

    Article  Google Scholar 

  80. Geißendörfer M, Liebscher A, Proppe C, Redenbach C, Schwarzer D: Stochastic multiscale modeling of metal foams. Probab Eng Mech. doi:10.1016/j.probengmech.2014.06.006

  81. Jeong G, Hindman D (2009) Ultimate tensile strength of loblolly pine strands using stochastic finite element method. J Mater Sci 44(14):3824–3832. doi:10.1007/s10853-009-3518-4

    Article  Google Scholar 

  82. Niemeyer F, Wilke HJ, Schmidt H (2012) Geometry strongly influences the response of numerical models of the lumbar spine—a probabilistic finite element analysis. J Biomech 45(8):1414–1423. doi:10.1016/j.jbiomech.2012.02.021

    Article  Google Scholar 

  83. Berthaume MA, Dechow PC, Iriarte-Diaz J, Ross CF, Strait DS, Wang Q, Grosse IR (2012) Probabilistic finite element analysis of a craniofacial finite element model. J Theor Biol 300:242–253. doi:10.1016/j.jtbi.2012.01.031

  84. Donaldson FE, Coburn JC, Siegel KL (2014) Total hip arthroplasty head-neck contact mechanics: a stochastic investigation of key parameters. J Biomech 47(7):1634–1641. doi:10.1016/j.jbiomech.2014.02.035

  85. Arsene CTC, Gabrys B (2013) Probabilistic finite element predictions of the human lower limb model in total knee replacement. Med Eng Phys 35(8):1116–1132. doi:10.1016/j.medengphy.2012.11.011

    Article  Google Scholar 

  86. Luo Q, Nakade R, Dong X, Rong Q, Wang X (2011) Effect of mineral-collagen interfacial behavior on the microdamage progression in bone using a probabilistic cohesive finite element model. J Mech Behav Biomed Mater 4(7):943–952. doi:10.1016/j.jmbbm.2011.02.003

    Article  Google Scholar 

  87. Celi S, Berti S (2014) Three-dimensional sensitivity assessment of thoracic aortic aneurysm wall stress: a probabilistic finite-element study. Eur J Cardio-Thorac 45(3):467–475. doi:10.1093/Ejcts/Ezt400

    Article  Google Scholar 

  88. Paiboon J, Griffiths DV, Huang JS, Fenton GA (2013) Numerical analysis of effective elastic properties of geomaterials containing voids using 3D random fields and finite elements. Int J Solids Struct 50(20–21):3233–3241. doi:10.1016/j.ijsolstr.2013.05.031

  89. Fang Q, Zhang J (2014) 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble. Int J Impact Eng 63:118–128. doi:10.1016/j.ijimpeng.2013.08.010

    Article  MathSciNet  Google Scholar 

  90. Vryzidis I, Stefanou G, Papadopoulos V (2013) Stochastic stability analysis of steel tubes with random initial imperfections. Finite Elem Anal Des 77:31–39. doi:10.1016/j.finel.2013.09.002

  91. Castillo D, Caro S (2014) Probabilistic modeling of air void variability of asphalt mixtures in flexible pavements. Constr Build Mater 61:138–146. doi:10.1016/j.conbuildmat.2014.02.075

  92. Guo T, Frangopol DM, Chen Y (2012) Fatigue reliability assessment of steel bridge details integrating weigh-in-motion data and probabilistic finite element analysis. Comput Struct 112–113:245–257. doi:10.1016/j.compstruc.2012.09.002

    Article  Google Scholar 

  93. Njuguna B, Pielichowski K (2003) Polymer nanocomposites for aerospace applications: properties. Adv Eng Mater 5(11):769–778. doi:10.1002/adem.200310101

    Article  Google Scholar 

  94. Hill R (1963) Elastic properties of reinforced solids—some theoretical principles. J Mech Phys Solids 11(5):357–372. doi:10.1016/0022-5096(63)90036-X

    Article  MATH  Google Scholar 

  95. Benveniste Y (1987) A new approach to the application of Mori-Tanaka theory in composite-materials. Mech Mater 6(2):147–157. doi:10.1016/0167-6636(87)90005-6

    Article  MathSciNet  Google Scholar 

  96. Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. North-Holland, London

    MATH  Google Scholar 

  97. Odegard GM, Gates TS, Wise KE, Park C, Siochi EJ (2003) Constitutive modeling of nanotube-reinforced polymer composites. Compos Sci Technol 63(11):1671–1687. doi:10.1016/S0266-3538(03)00063-0

    Article  Google Scholar 

  98. Hatami-Marbini H, Shahsavari A, Picu RC (2013) Multiscale modeling of semiflexible random fibrous structures. Comput-Aided Des 45(1):77–83. doi:10.1016/j.cad.2011.10.002

    Article  Google Scholar 

  99. Yavari V, Kadivar MH (2012) Application of stochastic finite element method in estimation of elastic constants for NCF composites. Mech Res Commun 40:69–76. doi:10.1016/j.mechrescom.2012.01.013

    Article  Google Scholar 

  100. Dincer I, Colpan CO (2013) Introduction to Stationary Fuel Cells. In: Solid oxide fuel cells: from materials to system modeling. The Royal Society of Chemistry, pp 1–25. doi:10.1039/9781849737777-00001

  101. Fergus JW (2009) Solid oxide fuel cells: materials properties and performances. CRC, Taylor & Francis [distributor], Boca Raton, Fla., London

  102. Singhal SC, Kendall K (2003) High-temperature solid oxide fuel cells: fundamentals, design, and applicatons. Elsevier Advanced Technology, New York

    Google Scholar 

  103. Lee K, Moorthy S, Ghosh S (1999) Multiple scale computational model for damage in composite materials. Comput Methods Appl Mech Eng 172(1–4):175–201. doi:10.1016/S0045-7825(98)00229-1

    Article  MATH  Google Scholar 

  104. Rozman MG, Utz M (2001) Efficient reconstruction of multiphase morphologies from correlation functions. Phys Rev E Stat Nonlinear Soft Matter Phys 63(6 Pt 2):066701

    Article  Google Scholar 

  105. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140. doi:10.1016/0022-5096(63)90060-7

    Article  MATH  MathSciNet  Google Scholar 

  106. Radovic M, Lara-Curzio E, Trejo RM, Wang H, Porter WD (2008) Thermophysical properties of YSZ and Ni-YSZ as a function of temperature and porosity. In: Advances in solid oxide fuel cells II: ceramic engineering and science proceedings. Wiley, London, pp 79–85. doi:10.1002/9780470291337.ch8

  107. Faisst TA (1989) Determination of the critical exponent of the linear thermal expansion coefficient of nickel by neutron diffraction. J Phys Condens Matter 1(33):5805

    Article  Google Scholar 

  108. Guedes J, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83(2):143–198. doi:10.1016/0045-7825(90)90148-F

    Article  MATH  MathSciNet  Google Scholar 

  109. Yu YL, Ye JR, Wang Y, Zhang BM, Qi GC (2013) A mesoscale ultrasonic attenuation finite element model of composites with random-distributed voids. Compos Sci Technol 89:44–51. doi:10.1016/j.compscitech.2013.09.006

    Article  Google Scholar 

  110. Combescure A (1997) Influence of initial imperfections on the collapse of thin walled structures. In: Predeleanu M, Gilormini P (eds) Studies in applied mechanics, volume 45. Elsevier, pp 385–394. doi:10.1016/S0922-5382(97)80040-2

  111. Bazant ZP, Cedolin L (1991) Stability of structures: elastic, inelastic, fracture, and damage theories. Dover Publications, NY

    MATH  Google Scholar 

  112. Flores EIS, DiazDelaO FA, Friswell MI, Sienz J (2012) A computational multi-scale approach for the stochastic mechanical response of foam-filled honeycomb cores. Compos Struct 94(5):1861–1870. doi:10.1016/j.compstruct.2011.11.001

    Article  Google Scholar 

  113. Sotomayor OE, Tippur HV (2014) Role of cell regularity and relative density on elasto-plastic compression response of random honeycombs generated using Voronoi diagrams. Int J Solids Struct 51(21–22):3776–3786. doi:10.1016/j.ijsolstr.2014.07.009

  114. MAVI-modular algorithms for volume images. Fraunhofer ITWM, Department Image Processing. (2014). http://www.itwm.fraunhofer.de/en/departments/image-processing/microstructure-analysis/mavi.html

  115. Ohser J, Schladitz K (2009) 3D images of materials structures: processing and analysis. Wiley, Weinheim

    Book  MATH  Google Scholar 

  116. Aurenhammer F (1987) Power diagrams—properties, algorithms and applications. SIAM J Comput 16(1):78–96. doi:10.1137/0216006

    Article  MATH  MathSciNet  Google Scholar 

  117. Siegkas P, Tagarielli V, Petrinic N (2014) Modelling stochastic foam geometries for FE simulations using 3D Voronoi cells. Proc Mater Sci 4:212–217. doi:10.1016/j.mspro.2014.07.604

    Google Scholar 

  118. Jeong G (2008) Tensile properties of loblolly pine strands using digital image correlation and stochastic finite element method Virginia. Polytechnic Institute & State University, Blacksburg

  119. Tsai SW (1968) Strength theories of filamentary structures, fundamental aspects of fiber reinforced plastic composites. Wiley, London

    Google Scholar 

  120. Laz PJ, Browne M (2010) A review of probabilistic analysis in orthopaedic biomechanics. Proc Inst Mech Eng H 224(8):927–943

    Article  Google Scholar 

  121. Kurtz SM, Edidin AA (2006) Spine technology handbook. Elsevier Academic Press, Amsterdam

    Google Scholar 

  122. Strait DS, Wang Q, Dechow PC, Ross CF, Richmond BG, Spencer MA, Patel BA (2005) Modeling elastic properties in finite element analysis: how much precision is needed to produce an accurate model? Anat Rec Part A 283A(2):275–287. doi:10.1002/Ar.A.20172

    Article  Google Scholar 

  123. Wang Q, Dechow PC (2006) Elastic properties of external cortical bone in the craniofacial skeleton of the rhesus monkey. Am J Phys Anthropol 131(3):402–415. doi:10.1002/Ajpa.20438

    Article  Google Scholar 

  124. Ross CF, Berthaume MA, Dechow PC, Iriarte-Diaz J, Porro LB, Richmond BG, Spencer M, Strait D (2011) In vivo bone strain and finite-element modeling of the craniofacial haft in catarrhine primates. J Anatomy 218(1):112–141. doi:10.1111/j.1469-7580.2010.01322.x

    Article  Google Scholar 

  125. PAM-OPT users manual (2007) 75761 Paris Cedex, 16. ESI Group, Rue Hamelin, France

  126. PAM-CRASH user manual (2007) 75761 Paris Cedex, 16. ESI Group, Rue Hamelin, France

  127. Dong XN, Luo Q, Sparkman DM, Millwater HR, Wang X (2010) Random field assessment of nanoscopic inhomogeneity of bone. Bone 47(6):1080–1084. doi:10.1016/j.bone.2010.08.021

    Article  Google Scholar 

  128. Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater 6(6):454–462. http://www.nature.com/nmat/journal/v6/n6/suppinfo/nmat1911_S1.html

  129. Griffiths DV, Paiboon J, Huang JS, Fenton GA (2012) Homogenization of geomaterials containing voids by random fields and finite elements. Int J Solids Struct 49(14):2006–2014. doi:10.1016/j.ijsolstr.2012.04.006

    Article  Google Scholar 

  130. Yao LH, He PP, Song SK (2010) A perturbation stochastic finite-element method for groundwater flow models based on an undetermined-coefficients approach. Hydrogeol J 18(7):1603–1609. doi:10.1007/s10040-010-0639-4

  131. Cavdar O, Bayraktar A, Adanur S (2010) Stochastic finite element analysis of a cable-stayed bridge system with varying material properties. Probab Eng Mech 25(2):279–289. doi:10.1016/j.probengmech.2010.01.008

    Article  Google Scholar 

  132. Cavdar O, Bayraktar A, Adanur S, Basaga HB (2010) Stochastic finite element analysis of long-span bridges with CFRP cables under earthquake ground motion. Sadhana 35(3):341–354

  133. LS-DYNA (2006) Keyword user’s manual. Livermore Software Technology Corporation, Livermore, California

  134. Holmqust TJ, Johnson GR, Cook WH (1993) A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures. In: 14th ballistics international symposium vol 2

  135. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: 7th international symposium on ballisitics

  136. Langheim H, Schmolinske E, Stilp AJ, Pahl H (1993) Subscale penetration tests with bombs and advanced penetrators against hardened structures, In: 6th international symposium, interaction of nonnuclear munitions with structures

  137. Eder F, Industries C (1984) Collapse tests of fabricated cylinders under combined axial compression and external pressure: final report. CBI Industries

  138. Schillinger D, Papadopoulos V (2010) Accurate estimation of evolutionary power spectra for strongly narrow-band random fields. Comput Method Appl Mech Eng 199(17–20):947–960. doi:10.1016/j.cma.2009.11.008

    Article  MATH  MathSciNet  Google Scholar 

  139. Shinozuka M, Deodatis G (1996) Simulation of multi-dimensional Gaussian stochastic fields by spectral representation. Appl Mech Rev 49(1):29–53. doi:10.1115/1.3101883

  140. Combescure A (1997) Influence of initial imperfections on the collapse of thin walled structures. Stud Appl Mech 45:385–394

    Article  Google Scholar 

  141. Kamiński M, Świta P Structural stability and reliability of the underground steel tanks with the Stochastic finite element method. Arch Civ Mech Eng. doi:10.1016/j.acme.2014.04.010

  142. Chryssanthopoulos MK, Poggi C (1995) Stochastic imperfection modelling in shell buckling studies. Thin-Walled Struct 23 (1–4):179–200. doi:10.1016/0263-8231(95)00011-2

  143. Papadopoulos V, Stefanou G, Papadrakakis M (2009) Buckling analysis of imperfect shells with stochastic non-Gaussian material and thickness properties. Int J Solids Struct 46(14–15):2800–2808. doi:10.1016/j.ijsolstr.2009.03.006

    Article  MATH  Google Scholar 

  144. Mahadevan S, Haldar A (1991) Practical random field discretization in stochastic finite-element analysis. Struct Saf 9(4):283–304. doi:10.1016/0167-4730(91)90050-J

    Article  Google Scholar 

  145. Sudret B, Kiureghian AD (2002) Comparison of finite element reliability methods. Probab Eng Mech 17(4):337–348. doi:10.1016/S0266-8920(02)00031-0

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Council on Science and Technology of Mexico (CONACYT) and the UK Office for Nuclear Regulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José David Arregui-Mena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arregui-Mena, J.D., Margetts, L. & Mummery, P.M. Practical Application of the Stochastic Finite Element Method. Arch Computat Methods Eng 23, 171–190 (2016). https://doi.org/10.1007/s11831-014-9139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9139-3

Keywords

Navigation