Skip to main content
Log in

Development of the Multi-scale Analysis Model to Simulate Strain Localization Occurring During Material Processing

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

A detailed description of possibilities given by the developed Cellular Automata—Finite Element (CAFE) multi scale model for prediction of the initiation and propagation of micro shear bands and shear bands in metallic materials subjected to plastic deformation is presented in the work. Particular emphasis in defining the criterion for initiation of micro shear and shear bands, as well as in defining the transition rules for the cellular automata, is put on accounting for the physical aspects of these phenomena occurring in two different scales in the material. The proposed approach led to the creation of the real multi scale model of strain localization phenomena. This model predicts material behavior in various thermo-mechanical processes. Selected examples of applications of the developed model to simulations of metal forming processes, which involve strain localization, are presented in the work. An approach based on the Smoothed Particle Hydrodynamic, which allows to overcome difficulties with remeshing in the traditional CAFE method, is a subject of this work as well. In the developed model remeshing becomes possible and difficulties limiting application of the CAFE method to simple deformation processes are solved. Obtained results of numerical simulations are compared with the experimental results of cold rolling process to show good predicative capabilities of the developed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allix O (2006) Multiscale strategy for solving industrial problems. Comput Methods Appl Sci 6:107–126

    Article  Google Scholar 

  2. Anand L, Kalidindi SR (1994) The process of shear band formation in plane strain compression of fcc metals: effect of crystallographic texture. Mech Mater 17:223–243

    Article  Google Scholar 

  3. Anand L, Spitzig A (1980) Initiation of localized shear bands in plane strain. J Mech Phys Solids 28:113–128

    Article  Google Scholar 

  4. Armero F, Garikipati K (1995) Recent advances in the analysis and numerical simulation of strain localization in inelastic solids. In: Owen DRJ, Onate E (eds) Proc conf COMPLAS95. Barcelona, pp 547–561

  5. Balokhonov RR, Romanova VA, Schmauder S, Makarov PV (2003) Simulation of meso-macro dynamic behavior using steel as an example. Comput Mater Sci 28:505–511

    Article  Google Scholar 

  6. Baudin T, Penelle R, Liu Y (1996) Simulation of normal grain growth by cellular automata. Scr Mater 34:1679–1683

    Article  Google Scholar 

  7. Berveiller M, Naddari A, Fakri N, Korbel A (1992) The role of shear bands in the evolution of copper texture. Int J Plast 8:857–865

    Article  Google Scholar 

  8. Beynon JH, Das S, Howard IC, Palmier EJ, Shterenlikht A (2000) The combination of cellular automata and finite elements for the study of fracture; the CAFE model of fracture. In: Neimitz A, Rokach IV, Kocañda D, Goo K (eds) Proc conf, ECF14. Kraków, pp 241–248

  9. Beynon JH, Das S, Howard IC, Shterenlikht A (2002) Extending the local approach to fracture; methods for direct incorporation of microstructural effects into finite element model of fracture. In: Brust FW (ed) Proc conf ASME2002. Vancouver, pp 229–237

  10. Bochniak W, Korbel A (2003) KOBO type forming forging of metals under complex conditions of the process. J Mater Process Technol 134:120–134

    Article  Google Scholar 

  11. Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics method with applications in metal forming simulation. Int J Numer Methods Eng 47:1189–1214

    Article  MATH  Google Scholar 

  12. Burbelko A (2004) Mezomodelowanie krystalizacji metod automatu komórkowego. Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków (in Polish)

    Google Scholar 

  13. Chantrenne P (2006) Atomic scale simulation use of molecular dznamics. In: Juster N, Rosochowski A (eds) Mat konf ESAFORM 2006, Glasgow, pp 123–127

  14. Chenot JL, Bay F (1998) An overview of numerical modeling techniques. J Mater Process Technol 80–81:8–15

    Article  Google Scholar 

  15. Cizek P (2002) Characteristics of shear bands in an austenitic stainless steel during hot deformation. Mater Sci Eng A 324:214–218

    Article  Google Scholar 

  16. Cizek P (2002) Formation of shear bands during hot torsion of an austenitic stainless steel. In: Palmiere EJ, Mahfouf M, Pinna C (eds) Proc conf, thermomech processing, mechanics, microstructure and control, Sheffield, pp 289–295

  17. Cizek P, Bai F, Rainforth M, Baynon J (2004) Fine structure of shear bands formed during hot deformation of two austenitic steels. Mater Trans 45:2157–2164

    Article  Google Scholar 

  18. Colas R, Grinberg A (1993) Plastic instability in a heat-treatable aluminum alloy. Mater Sci Eng A 161:201–208

    Article  Google Scholar 

  19. Conway JH (1976) On numbers and games. Academic Press, New York

    MATH  Google Scholar 

  20. Crumbach M, Goerdeler M, Gottstein G, Neumann L, Aretz H, Kopp R (2004) Through-process texture modelling of aluminum alloys. Model Simul Mater Sci Eng 12:1–18

    Article  Google Scholar 

  21. Das S (2002) The effect of boundary conditions and material data representation on the simulation of deformation during hot rolling. PhD thesis, University of Sheffield, Sheffield

  22. Das S, Palmiere EJ, Howard IC (2002) CAFE: a tool for modeling thermomechanical processes. In: Palmiere EJ, Mahfouf M, Pinna C (eds) Proc conf, thermomech processing, mechanics, microstructure and control, Sheffield, pp 296–301

  23. Daux C, Moes N, Dolbow N, Sukumar J, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48:1741–1760

    Article  MATH  Google Scholar 

  24. Davies CHJ (1995) The effect of neighborhoods on the kinetics of a cellular automaton recrystallization model. Scr Metall Mater 33:1139–1143

    Article  Google Scholar 

  25. Davies CHJ (1997) Growth of nuclei in a cellular automaton simulation of recrystalization. Scr Mater 36:35–40

    Article  Google Scholar 

  26. Davies CHJ, Hong L (1999) The cellular automaton simulation of static recrystallization in cold-rolled AA1050. Scr Mater 40:1145–1150

    Article  Google Scholar 

  27. Deve HE, Asaro RJ (1989) The development of plastic failure modes in crystalline materials: shear bands in FCC polycrystals. Metall Trans A 20:579–593

    Article  Google Scholar 

  28. Dillamore IL, Roberts JG, Bush AC (1979) Occurrence of shear bands in heavily rolled cubic metals. Metal Sci 13:73–77

    Article  Google Scholar 

  29. Ding R, Guo Z (2001) Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Mater 49:3163–3175

    Article  Google Scholar 

  30. Ding R, Guo Z (2002) Microstructural modelling of dynamic recrystallisation using an extended cellular automaton approach. Comput Mater Sci 23:209–218

    Article  Google Scholar 

  31. Ding R, Guo Z (2004) Microstructural evolution of a Ti-6Al-4V alloy during β-phase processing, experimental and simulative investigations. Mater Sci Eng A 365:172–179

    Article  Google Scholar 

  32. Duggan BJ, Hatherly M, Hutchinson WB, Wakefield PT (1978) Deformation structures and textures in cold-rolled 70:30 brass. Metal Sci 12:343–351

    Article  Google Scholar 

  33. Embury JD, Korbel A, Raghunathan VS, Rys J (1984) Shear band formation in cold rolled Cu-6. Acta Metall 32:1883–1894

    Article  Google Scholar 

  34. Feng H, Bassim MN (1999) Finite element modelling of the formation of adiabatic shear bands in AISI 4340 steel. Mat Sci Eng A 266:255–260

    Article  Google Scholar 

  35. Fries TP, Matthies HG (2004) Classification and overview of meshfree methods. Scientific Computing, Informatikbericht, 2003-3, Brunswick

  36. Gandin CA, Rappaz M (1994) A coupled finite element—cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metall 42:2233–2246

    Article  Google Scholar 

  37. Gandin C, Desbiolles J, Rappaz M, Thevoz P (1999) A three-dimensional cellular automaton-finite element model for the prediction of solidification grain structures. Metall Mater Trans A 30:3153–3165

    Article  Google Scholar 

  38. Gawad J, Madej L (2005) Zastosowanie automatow komorkowych do wieloskalowej analizy zjawisk w inzynierii metali. Inf Technol Mater 5:142–162

    Google Scholar 

  39. Gawad J, Madej L, Szeliga D, Pietrzyk M (2004) Microstructure evolution modeling based on the rheological parameters using the cellular automaton technique. In: Proc conf forming 2004, Strebske Pleso, pp 67–70

  40. Gawad J, Maciol P, Pietrzyk M (2005) Multiscale modeling of microstructure and macroscopic properties in thixoforming process using cellular automaton technique. Arch Metall Mater 50:549–561

    Google Scholar 

  41. Gawad J, Madej L, Szeliga D, Pietrzyk M (2005) Cellular automaton technique as a tool for a complex analysis of the microstructure evolution and rheological behaviour. Acta Metall Slov 11:45–53

    Google Scholar 

  42. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    MATH  Google Scholar 

  43. Goetz R (2005) Particle stimulated nucleation during dynamic recrystallization using a cellular automata model. Scr Mater 52:851–856

    Article  Google Scholar 

  44. Goetz R, Seetharaman V (1998) Modeling dynamic recrystallization using cellular automata. Scr Mater 38:405–413

    Article  Google Scholar 

  45. Goetz R, Seetharaman V (1998) Static recrystallization kinetics with homogeneous and heterogeneous nucleation using a cellular automata model. Metal Mater Trans A 29:2307–2321

    Article  Google Scholar 

  46. Guillemot G, Gandin CA, Combeau H, Heringer R (2004) A new cellular automaton—finite element coupling scheme for alloy solidification. Model Simul Mater Sci Eng 12:545–556

    Article  Google Scholar 

  47. Harren SV, Deve HE, Asaro RJ (1988) Shear band formation in plane strain compression. Acta Metall 36:2435–2480

    Article  Google Scholar 

  48. Hesselbarth H, Göbel I (1991) Simulation of recrystallization by cellular automata. Acta Metall 39:2135–2143

    Article  Google Scholar 

  49. Howard IC, Li ZH, Sheikh MA (2000) Modeling the ductile to cleavage transition in steels and structures. In: Paris PC, Jerina KL (eds) ASTM STP 1360, Philadelphia, pp 152–168

  50. Humphreys FJ (2004) Nucleation in recrystallization. Mater Sci Forum 467–470:107–116

    Article  Google Scholar 

  51. Humphreys FJ, Hatherly M (1995) Recrystalization and related annealing phenomena. Pergamon, Elmsford

    Google Scholar 

  52. Janssens KGF, Holm EA, Foiles SM (2004) Introducing solute drag in irregular cellular automata modelling of grain growth. Mater Sci Forum 467470:1045–1050

    Article  Google Scholar 

  53. Kazanowski P, Browne HM, Libura W, Misiolek WZ (2005) Mechanical and microstructural performance of convex dies in axisymetric extrusion—theory and experimental verification. Mater Sci Eng A 404:235–243

    Article  Google Scholar 

  54. Korbel A, Martin P (1986) Microscopic versus macroscopic aspects of shear bands deformation. Acta Metall 34:1905–1909

    Article  Google Scholar 

  55. Korbel A, Richter M (1985) Formation of shear bands during cyclic deformation of aluminum. Acta Metall 33:1971–1978

    Article  Google Scholar 

  56. Korbel A, Dobrzanski F, Richert M (1983) Strain hardening of aluminium at high strains. Acta Metall 31:293–298

    Article  Google Scholar 

  57. Korbel A, Embury JD, Hatherly M, Martin PL, Erbsloh HW (1986) Microstructural aspects of strain localization in Al-Mg alloys. Acta Metall 34:1999–2009

    Article  Google Scholar 

  58. Korbel A, Martinh P (1988) Microstructural events of macroscopic strain localization in prestrained tensile specimens. Acta Metall 36:2575–2586

    Article  Google Scholar 

  59. Korbel A (1990) The model of microshear banding in metals. Scr Metall Mater 24:1229–1231

    Article  Google Scholar 

  60. Korbel A (1992) Perspectives of the control of mechanical performance of metals during forming operations. J Mater Process Technol 34:41–50

    Article  Google Scholar 

  61. Korbel A (1998) Structural and mechanical aspects of homogeneous and non-homogeneous deformation in solids. In: Courses and lectures, vol 386. Springer, Berlin, pp 21–98

    Google Scholar 

  62. Korbel A, Bochniak W (1995) The structure based design of metal forming operations. J Mater Process Technol 53:229–237

    Article  Google Scholar 

  63. Korbel A, Bochniak W (2004) Refinement and control of the metal structure elements by plastic deformation. Scr Mater 51:755–759

    Article  Google Scholar 

  64. Korbel A, Ciura F (1997) The mechanical instability of the metal substructure and formation of pseudo periodic substructure in thermodynamically stable and unstable phases. J Mater Process Technol 64:231–238

    Article  Google Scholar 

  65. Kroc J (2001) Simulation of dynamic recrystallization by cellular automata. PhD thesis, Charles University, Prague

  66. Kroc J (2002) Application of cellular automata simulations to modelling of dynamic recrystallization. In: Lecture notes in computer science, vol 2329, pp 773–782

  67. Kroc J (2005) Influence of lattice anisotropy on models formulated by cellular automata in presence of grain boundary movement, a case study. Mater Sci Forum 482:195–198

    Article  Google Scholar 

  68. Kroc J, Paidar V (2001) Modelling of the effect of triple junctions on grain boundary migration by a cellular automaton. J Phys 11:85–92

    Google Scholar 

  69. Kroc J, Paidar V (2003) Modelling of recrystallization and grain boundary migration by cellular automata. Mater Sci Forum 426–432:3873–3878

    Article  Google Scholar 

  70. Kulakowski K (2000) Automaty komorkowe. Osrodek Edukacji Niestacjonarnej, Kraków (in Polish)

    Google Scholar 

  71. Lan YJ, Xiao NM, Li DZ, Li YY (2005) Mesoscale simulation of deformed austenit decomposition into ferrite by coupling a cellular automaton method with a crystal plasticity finite element model. Acta Mater 53:991–1003

    Article  Google Scholar 

  72. Lee WB, Chan KC (1991) A criterion for the prediction of shear band angles in FCC metals. Acta Metall Mater 39:411–417

    Article  Google Scholar 

  73. Li S, Liu WK (2000) Numerical simulation of strain localization in inelastic solids using mesh-free methods. Int J Numer Metods Eng 48:1285–1309

    Article  MATH  Google Scholar 

  74. Libersky LD, Petschek AG (1990) Smooth particle hydrodynamics with strength of materials. In: Advances in the free Lagrange method. Lecture notes in physics, vol 395, pp 248–257

  75. Libura W, Zasadzinski J (1992) The influence of strain gradient on material structure during extrusion of the AlCu4Mg alloy. J Mater Process Technol 34:517–524

    Article  Google Scholar 

  76. Liu GR, Liu MB (2003) Smoothed particle hydrodynamic: a meshfree particle method. World Scientific, Singapore

    MATH  Google Scholar 

  77. Liu Y-LL, Delaey E, Aernoudt E, Arkens O (1987) Substructure development and mechanical properties in cold-rolled aluminium alloy 3004. Mater Sci Eng 96:125–137

    Article  Google Scholar 

  78. Lucy LB (1977) A numerical approach to the testing of fusion process. Astron J 88:1013–1024

    Article  Google Scholar 

  79. Madej L, Hodgson P, Gawad J, Pietrzyk M (2004) Modeling of rheological behavior and microstructure evolution using cellular automaton technique. In: Støren S (ed), Proc conf ESAFORM 2004, Trondheim, pp 143–146

  80. Madej L, Zmudzki A, Pietrzyk M (2005) Mozliwosci uwzglednienia wplywu wymuszonej zmiany drogi odksztalcenia na naprezenie uplastyczniajace w procesach plastycznej przerobki metali. In: Piela A, Lisok J, Grosman F (eds) Proc conf KomPlasTech 2005, Ustron, pp 207–214 (in Polish)

  81. Madej L, Pietrzyk M, Pidvysotskyy V, Kuziak R (2005) Analiza wrazliwosci naprezenia uplastyczniajacego, wyznaczonego z próby sciskania pierscieni, na wspolczynnik tarcia i wymiary probki. Inf Technol Mater 5:83–94 (in Polish)

    Google Scholar 

  82. Madej L, Hodgson PD, Pietrzyk M (2005) The remeshing problem in the multi scale strain localization CAFE approach. In: Lecture series on computer and computational sciences, vol 4, pp 365–368

  83. Madej L, Talamantes-Silva J, Howard IC, Pietrzyk M (2005) Modeling of the initiation and propagation of the shear band using the coupled CAFE model. Arch Metall Mater 50:563–573

    Google Scholar 

  84. Madej L, Hodgson PD, Pietrzyk M (2006) Multi scale analysis of material behavior during deformation processes. In: Kurzydlowski KJ, Major B, Zieba P (eds) Foundation of materials design. Research Signpost, Kerala, pp 17–47

    Google Scholar 

  85. Madej L, Hodgson PD, Pietrzyk M (2007) Multi scale rheological model for discontinuous phenomena in materials under deformation conditions. Comput Mater Sci 38:685–691

    Article  Google Scholar 

  86. Makarov PV (2000) Localized deformation and fracture of polycrystals at mesolevel. Theor Appl Fract Mech 33:23–30

    Article  Google Scholar 

  87. Makarov PV, Romanova VA (2000) Mesoscale plastic flow generation and development for polycrystals. Theor Appl Fract Mech 33:1–7

    Article  Google Scholar 

  88. Makarov PV, Schmuader S, Cherepanov OI, Smolin IY, Romanova VA, Balokhonov RR, Saraev DY, Soppa E, Kizler P, Fisher G, Hu S, Ludwig M (2001) Simulation of elastic-plastic deformation and fracture of materials at micro-, meso- and macrolevels. Theor Appl Fract Mech 37:183–244

    Article  Google Scholar 

  89. Malarz K (2003) Automaty komorkowe. Wydzial Fizyki i Techniki Jadrowej AGH, Kraków (in Polish)

    Google Scholar 

  90. Marx V, Reher FR, Gottstein G (1999) Simulation of primary recrystallization using a modified three-dimensional cellular automaton. Acta Mater 47:1219–1230

    Article  Google Scholar 

  91. Monaghan JJ (2005) Smoothed particle hydrodynamic. IPAM, Notes

  92. Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52:374–389

    Article  MATH  Google Scholar 

  93. Morii K, Mecking H, Nakayama Y (1985) Development of shear band in FCC single crystals. Acta Metall 33:379–386

    Article  Google Scholar 

  94. Mrozek A, Burczynski T (2006) Analysis of the material behaviour at the nanoscale. In: Proc conf 35th solid mechanics, Kraków, pp 283–284

  95. Mrozek A, Kus W, Burczyñski T (2007) Application of the coupled boundary element method with atomic model in the static analysis. Comput Methods Mater Sci 7:284–288

    Google Scholar 

  96. Mukhopadhyay P, Loeck M, Gottstein G (2004) Simulation of microstructure evolution during recrystallization using a high-resolution three-dimensional cellular automaton. J Phys 120:225–230

    Google Scholar 

  97. Nakayama Y, Morii K (1987) Microstructure and shear band formation in rolled single crystals of Al-Mg alloy. Acta Metall 35:1747–1755

    Article  Google Scholar 

  98. Nave M, Barnett M (2004) Microstructures and textures of pure magnesium deformed in plane-strain compression. Scr Mater 51:881–885

    Article  Google Scholar 

  99. Nourbakhsh S, Nutting J (1980) The high strain deformation of an aluminum-4pc copper alloy in the supersaturated and aged conditions. Acta Metall 28:357–365

    Article  Google Scholar 

  100. Nourbakhsh S, Vujic D (1986) High strain plane strain deformation of 70-30 brass in a channel die. Acta Metall 34:1083–1090

    Article  Google Scholar 

  101. Oliferuk W, Korbel A, Bochniak W (2001) Energy balance and macroscopic strain localization during plastic deformation of polycrystalline metals. Mater Sci Eng A319-321:250–153

    Google Scholar 

  102. Olivier J (1995) Continuum modelling of strong discontinuities in solid mechanics. In: Owen DRJ, Onate E (eds) Proc conf COMPLAS’95, Barcelona, pp 455–479

  103. Paszynski M, Kopernik M, Madej L, Pietrzyk M (2006) Automatic hp adaptivity to improve accuracy of heat transfer model and linear elasticity problems in engineering solving. J Mach Eng 16:73–82

    Google Scholar 

  104. Paul H, Driver JH, Jasienski Z (2002) Shear banding and recrystallization nucleation in a Cu-2rystal. Acta Mater 50:815–830

    Article  Google Scholar 

  105. Pecherski RB (1992) Modelling of large plastic deformations based on the mechanism of micro-shear banding. Physical foundation and theoretical description in plane strain. Arch Mech 44:563–584

    MATH  MathSciNet  Google Scholar 

  106. Pecherski RB (1998) Continuum mechanics description of plastic flow produced by micro-shear bands. Tech Mach 18:107–115

    Google Scholar 

  107. Pecherski RB (1998) Macroscopic effect of micro-shear banding in plasticity of metals. Acta Mech 131:203–224

    Article  MATH  Google Scholar 

  108. Qian M, Guo Z (2004) Cellular automata simulation of microstructural evolution during dynamic recrystallization of an HY-100 steel. Mater Sci Eng A 365:180–185

    Article  Google Scholar 

  109. Raabe D (1998) Computational material science: the simulation of materials microstructures and properties. Wiley, New York

    Google Scholar 

  110. Raabe D (2002) Cellular automata in materials science with particular reference to recrystallization simulation. Ann Rev Mater Res 32:53–76

    Article  Google Scholar 

  111. Raabe D (2004) Mesoscale simulation of spherulite growth during polymer crystallization by use of a cellular automaton. Acta Mater 52:2653–2664

    Article  Google Scholar 

  112. Raabe D, Hantcherli L (2005) 2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning. Comput Mater Sci 34:299–313

    Article  Google Scholar 

  113. Richert M, Korbel A (1995) The effect of strain localization on mechanical properties of Al99,992 in the range of large deformations. J Mater Process Technol 53:331–340

    Article  Google Scholar 

  114. Rollett A, Raabe D (2001) A hybrid model for mesoscopic simulation of recrystallization. Comput Mater Sci 21:69–78

    Article  Google Scholar 

  115. Rondanini M, Barbato A, Cavalloti C (2006) A multi scale model of the Si CVD process. In: Proc conf MMM, pp 98–101

  116. Rosochowski A, Olejnik L, Richert M (2004) Metal forming technology for production bulk nanostructured materials. Steel-Grips 3:35–44

    Google Scholar 

  117. Rousselier G, Devaux JC, Mottel G, Devesa G (1989) A methodology of ductile fracture analysis based on damage mechanics: an illustration of a local approach of fracture. In: Landers JD, Saxena A, Merkle JG (eds) Non linear fracture mechanics: vol II, ASTM STP 995, Philadelphia, pp 332–354

  118. Searles T, Tiley J, Tanner A, Williams R, Rollins B, Lee E, Kar S, Banerjee R, Fraser HL (2005) Rapid characterization of titanium microstructural features for specific modelling of mechanical properties. Meas Sci Technol 16:60–69

    Article  Google Scholar 

  119. Sherry AH, Beardsmore DW, Lidbury DPG, Sheikh MA, Howard IC (1998) Remanent life assessment using the local approach—a prediction of the outcome of the NESC experiment. Mech Eng Pub S539/006:87–103

    Google Scholar 

  120. Shiari B, Miller RE, Curtin WA (2005) Coupled atomistic/discrete dislocation simulations of nanoindentation at finite temperature. J Eng Mater Technol 127:358–367

    Article  Google Scholar 

  121. Shterenlikht A (2003) 3D CAFE Modeling of transitional ductile—brittle fracture in steels. PhD thesis, University of Sheffield, Sheffield

  122. Strouboulis T, Copps K, Babuska I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190:4081–4193

    Article  MATH  MathSciNet  Google Scholar 

  123. Svyetlichnyy D, Milenin A (2009) Modelling of microstructure evolution during rolling by using cellular automataa. J Comput Methods Mater Sci 9:256–263

    Google Scholar 

  124. Szeliga D, Pietrzyk M (2007) Testing of the inverse software for identification of rheological models of materials subjected to plastic deformation. Arch Civ Mech Eng 7:35–52

    Google Scholar 

  125. Szeliga D, Gawad J, Pietrzyk M (2006) Inverse analysis for identification of rheological and friction models in metal forming. Comput Methods Appl Mech Eng 195:6778–6798

    Article  MATH  Google Scholar 

  126. Terrier V (2004) Two-dimensional cellular automata and their neighborhoods. Theor Comput Sci 312:203–222

    Article  MATH  MathSciNet  Google Scholar 

  127. Vignjevic R (2004) Review of development of the smooth particle hydrodynamics (SPH) method. In: Proc conf DCSSS, Cranfield

  128. Von Neumann J (1966) Theory of self reproducing automata. University of Illinois, Urbana

    Google Scholar 

  129. Wajda W (2004) Modelowanie procesow przerobki plastycznej z uwzglednieniem efektow mikropasm scinania. PhD thesis, AGH, Kraków (in Polish)

  130. Wolfram S (1994) Universality and complexity in cellular automata. Physica D 10

  131. Yu Q, Esche SK (2005) A multi-scale approach for microstructure prediction in thermo-mechanical processing of metals. J Mater Process Technol 169:493–502

    Article  Google Scholar 

  132. Zhu Q, Abbod MF, Talamantes-Silva J, Sellars CM, Linkers DA, Beynon JH (2003) Hybrid modeling of aluminum-magnesium alloys during thermomechanical processing in terms of physically based, neuro-fuzzy and finite element models. Acta Mater 51:5051–5062

    Article  Google Scholar 

  133. Zienkiewicz OC, Morgan K (2006) Finite elements and approximation. Dover, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukasz Madej.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madej, L., Hodgson, P.D. & Pietrzyk, M. Development of the Multi-scale Analysis Model to Simulate Strain Localization Occurring During Material Processing. Arch Computat Methods Eng 16, 287–318 (2009). https://doi.org/10.1007/s11831-009-9033-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-009-9033-6

Keywords

Navigation