Skip to main content

Advertisement

Log in

Electrophysiological and behavioral responses of Helicoverpa assulta (Lepidoptera: Noctuidae) to tobacco volatiles

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The Oriental tobacco budworm moth, Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae), is a serious pest on tobacco in China. The flowering stage of the host plant is one of the most attractive stages to H. assulta for feeding and oviposition. Nine electrophysiologically active compounds in tobacco headspace at flower stage were detected by gas chromatography–electroantennographic detection (GC–EAD). These compounds were subsequently identified by gas chromatography-mass spectrometry (GC–MS) as (E)-β-ocimene, octanal, (Z)-3-hexenyl acetate, (Z)-3-hexen-1-ol, nonanal, (Z)-3-hexenyl-2-methyl butyrate, decanal, linalool, and (E)-β-caryophyllene. The synthetic blend containing nine of the above compounds attracted mated H. assulta females from a distance by upwind oriented flight. Selected subtraction assays showed that the 4-component mixture of (E)-β-ocimene, (Z)-3-hexenyl acetate, nonanal, and (E)-β-caryophyllene elicited equivalent levels of attraction as the 9-component mixture. The removal of any of the four compounds from the 4-component blend resulted in a significant decrease in female upwind flight behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson P, Hilker M, Hansson BS, Bombosch S, Klein B, Schildknecht H (1993) Oviposition deterring components in larval frass of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae): a behavioral and electrophysiological evaluation. J Insect Physiol 39:129–137

    Article  CAS  Google Scholar 

  • Ansebo L, Coracini MD, Bengtsson M, Liblikas I, Ramirez M, Borg-Karlson A-K, Tasin M, Witzgall P (2004) Antennal and behavioural response of codling moth Cydia pomonella to plant volatiles. J Appl Entomol 128:488–493

    Article  CAS  Google Scholar 

  • Bengtsson M, Jaastad G, Knudsen G, Kobro S, Bäckman AC, Pettersson EW, Witzgall P (2006) Plant volatiles mediate attraction to host and non-host plant in apple fruit moth, Argyresthia conjugella. Entomol Exp Appl 118:77–85

    Article  CAS  Google Scholar 

  • Bengtsson JM, Wolde-Hawariat Y, Khbaish H, Negash M, Jembere B, Sevoum E, Hansson BS, Larsson MC, Hillbur Y (2009) Field attractants for Pachnoda interrupta selected by means of GC-EAD and single sensillum screening. J Chem Ecol 35:1063–1076

    Article  PubMed  CAS  Google Scholar 

  • Bichão H, Borg-Karlson A-K, Wibe A, Araújo J, Mustaparta H (2005) Molecular receptive ranges of olfactory receptor neurones responding selectively to terpenoids, aliphatic green leaf volatiles and aromatic compounds, in the strawberry blossom weevil Anthonomus rubi. Chemoecology 15:211–226

    Article  Google Scholar 

  • Birkett MA, Bruce TJA, Martin JL, Smart LE, Oakley J, Wadhams LJ (2004) Response of female orange wheat blossom midge, Sitodiplosis mosellana, to wheat panicle volatiles. J Chem Ecol 30:1319–1328

    Article  PubMed  CAS  Google Scholar 

  • Boo KS, Park KC, Hall DR, Cork A, Berg BG, Mustaparta H (1995) (Z)-9-tetradecenal: a potent inhibitor of pheromone-mediated communication in the oriental tobacco budworm moth, Helicoverpa assulta. J Comp Physiol A 177:695–699

    Article  CAS  Google Scholar 

  • Bruce TJA, Cork A (2001) Electrophysiological and behavioral responses of female Helicoverpa armigera to compounds identified in flowers of African Marigold, Tagetes erecta. J Chem Ecol 27:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    Article  PubMed  CAS  Google Scholar 

  • Burguiere L, Marion-Poll F, Cork A (2001) Electrophysiological responses of female Helicoverpa armigera (Hübner) (Lepidoptera; Noctuidae) to synthetic host odours. J Insect Physiol 47:509–514

    Article  PubMed  CAS  Google Scholar 

  • Cha DH, Hesler SP, Moser CL, Nojima S, Linn CEJ, Roelofs WL, Loeb GM (2008a) Flight tunnel responses of female grape berry moth (Paralobesia viteana) to host plants. J Chem Ecol 34:622–627

    Article  PubMed  CAS  Google Scholar 

  • Cha DH, Nojima S, Hesler SP, Zhang AJ, Linn CEJ, Roelofs WL, Loeb GM (2008b) Identification and field evaluation of grape shoot volatiles attractive to female grape berry moth (Paralobesia viteana). J Chem Ecol 34:1180–1189

    Article  PubMed  CAS  Google Scholar 

  • Cork A, Boo KS, Dunkelblum E, Hall DR, Jee-Rajunga K, Kehat M, Jie EK, Park KC, Tepgidagarn P, Liu X (1992) Female sex pheromone of oriental tobacco budworm, Helicoverpa assulta (Gueflee) (Lepidoptera: Noctuidae): Identification and field testing. J Chem Ecol 18:403–418

    Article  CAS  Google Scholar 

  • Cunningham JP, Moore CJ, Zalucki MP, Cribb BW (2006) Insect odour perception: recognition of odour components by flower foraging moths. Proc R Soc B 273:2035–2040

    Article  PubMed  Google Scholar 

  • Fitt GP (1989) The ecology of Heliothis species in relation to agroecosystems. Ann Rev Entomol 34:17–52

    Article  Google Scholar 

  • Fraser AM, Mechaber WL, Hildebrand JG (2003) Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles. J Chem Ecol 29:1813–1833

    Article  PubMed  CAS  Google Scholar 

  • Hartlieb E, Rembold H (1996) Behavioral response of female Helicoverpa (Heliothis) armigera HB. (Lepidoptera: Noctuidae) moths to synthetic pigeonpea (Cajanus cajan L.) kairomone. J Chem Ecol 22:821–837

    Article  CAS  Google Scholar 

  • Hern A, Dorn S (1999) Sexual dimorphism in the olfactory orientation of adult Cydia pomonella in response to α-farnesene. Entomol Exp Appl 92:63–72

    Article  CAS  Google Scholar 

  • Hern A, Dorn S (2004) A female-specific attractant for the codling moth, Cydia pomonella, from apple fruit volatiles. Naturwissenschaften 91:77–80

    Article  PubMed  CAS  Google Scholar 

  • Jallow MF, Zalucki MP, Fitt GP (1999) Role of chemical cues from cotton in mediating host selection and oviposition behaviour in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Aust J Entomol 38:359–366

    Article  Google Scholar 

  • Light DM, Knight AL, Henrick CA, Rajaska D, Lingren B, Dickens JC, Reynolds KM, Buttery RG, Merrill G, Roitman J, Campbell BC (2001) A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.). Naturwissenschaften 88:333–338

    Article  PubMed  CAS  Google Scholar 

  • Loughrin JH, Hamilton-Kemp TR, Andersen RA, Hildebrand DF (1990) Headspace compounds from flowers of Nicotiana tabacum and related species. J Agric Food Chem 38:455–460

    Article  CAS  Google Scholar 

  • Ming QL, Yan YH, Wang CZ (2007) Mechanisms of premating isolation between Helicoverpa armigera (Hübner) and Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae). J Insect Physiol 53:170–178

    Article  PubMed  CAS  Google Scholar 

  • Mustaparta H, Angst ME, Lanier GN (1979) Specialization of olfactory cells to insect- and host-produced volatiles in bark beetle Ips pini (Say). J Chem Ecol 5:109–123

    Article  CAS  Google Scholar 

  • Natale D, Mattiacci L, Pasqualini E, Dorn S (2004) Apple and peach fruit volatiles and apple constituent butyl hexanoate attract female oriental fruit moth, Cydia molesta, in the laboratory. J Appl Entomol 128:22–27

    Article  Google Scholar 

  • Nojima S, Linn C, Morris B, Zhang AJ, Roelofs WL (2003) Identification of host fruit volatiles from hawthorn (Crataegus spp.) attractive to hawthorn-origin Rhagoletis pomonella flies. J Chem Ecol 29:321–336

    Article  PubMed  CAS  Google Scholar 

  • Olsson P-O, Anderbrant C, Löfstedt C, Borg-Karlson A-K, Liblikas I (2005) Electrophysiological and behavioral responses to chocolate volatiles in both sexes of the pyralid moths Ephestia cautella and Plodia interpunctella. J Chem Ecol 31:2947–2961

    Article  PubMed  CAS  Google Scholar 

  • Raguso RA, Schlumpberger BO, Kaczorowski RL, Holtsford TP (2006) Phylogenetic fragrance patterns in Nicotiana sections Alatae and Suaveolentes. Phytochemistry 67:1931–1942

    Article  PubMed  CAS  Google Scholar 

  • Reisenman CE, Christensen TA, Francke W, Hildebrand JG (2004) Enantioselectivity of projection neurons innervating identified olfactory glomeruli. J Neurosci 24:2602–2611

    Article  PubMed  CAS  Google Scholar 

  • Riffell JA, Lei H, Christensen TA, Hildebrand JG (2009) Characterization and coding of behaviorally significant odor mixtures. Curr Biol 19:335–340

    Article  PubMed  CAS  Google Scholar 

  • Rojas JC (1999) Electrophysiological and behavioral responses of the cabbage moth to plant volatiles. J Chem Ecol 25:1867–1883

    Article  CAS  Google Scholar 

  • Røstelien T, Stranden M, Borg-Karlson AK, Mustaparta H (2005) Olfactory receptor neurons in two Heliothine moth species responding selectively to aliphatic green leaf volatiles, aromatic compounds, monoterpenes and sesquiterpenes of plant origin. Chem Senses 30:443–461

    Article  PubMed  Google Scholar 

  • Schoonhoven LM, Van Loon JJA, Dicke M (2005) Insect-plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Skiri HT, Stranden M, Sandoz JC, Menzel R, Mustaparta H (2005) Associative learning of plant odorants activating the same or different receptor neurones in the moth Heliothis virescens. J Exp Biol 208:787–796

    Article  PubMed  CAS  Google Scholar 

  • Stranden M, Liblikas I, König WA, Almaas TJ, Borg-Karlson AK, Mustaparta H (2003a) (−)-Germacrene D receptor neurones in three species of heliothine moths: structure-activity relationships. J Comp Physiol A 189:563–577

    Article  CAS  Google Scholar 

  • Stranden M, Røstelien T, Liblikas I, Almaas TJ, Borg-Karlson AK, Mustaparta H (2003b) Receptor neurones in three heliothine moths responding to floral and inducible plant volatiles. Chemoecology 13:143–154

    Article  CAS  Google Scholar 

  • Sugie H, Tatsuki S, Nakagaki S, Rao CBJ, Yamamoto A (1991) Identification of the sex pheromone of the oriental tobacco budworm. Heliothis assulta (Guenée) (Lepidoptera: Noctuidae). Appl Entomol Zool 26:151–153

    CAS  Google Scholar 

  • Tasin M, Anfora G, Ioriatti C, Carlin S, Cristofaro ADE, Schmidt S, Bengtsson M, Versini G, Witzgall P (2005) Antennal and behavioral responses of grapevine moth Lobesia botrana females to volatiles from grapevine. J Chem Ecol 31:77–87

    Article  PubMed  CAS  Google Scholar 

  • Tasin M, Bäckman A, Bengtsson M, Ioriatti C, Witzgall P (2006a) Essential host plant cues in the grapevine moth. Naturwissenschaften 93:141–144

    Article  PubMed  CAS  Google Scholar 

  • Tasin M, Bäckman A, Bengtsson M, Varela N, Ioriatti C, Witzgall P (2006b) Wind tunnel attraction of grapevine moth females, Lobesia botrana, to natural and artificial grape odour. Chemoecology 16:87–92

    Article  CAS  Google Scholar 

  • Tasin M, Bäckman A, Coracini M, Casado D, Ioriatti C, Witzgall P (2007) Synergism and redundancy in a plant volatile blend attracting grapevine moth females. Phytochemistry 68:203–209

    Article  PubMed  CAS  Google Scholar 

  • Ulland S, Lan E, Borg-Karlson A-K, Mustaparta H (2006) Discrimination between enantiomers of linalool by olfactory receptor neurons in the cabbage moth Mamestra brassicae (L.). Chem Senses 31:325–334

    Article  PubMed  CAS  Google Scholar 

  • Wang CZ, Dong JF (2001) Interspecific hybridization of Helicoverpa armigera and H. assulta (Lepidoptera: Noctuidae). Chinese Sci Bull 46:490–492

    Google Scholar 

  • Wei JN, Zhu J, Kang L (2006) Volatiles released from bean plants in response to Agromyzid flies. Planta 224:279–287

    Article  PubMed  CAS  Google Scholar 

  • Wibe A (2004) How the choice of method influence on the results in electrophysiological studies of insect olfaction. J Insect Physiol 50:497–503

    Article  PubMed  CAS  Google Scholar 

  • Williams L, Blackmer JL, Rodriguez-Saona C, Zhu S (2010) Plant volatiles influence electrophysiological and behavioral responses of Lygus hesperus. J Chem Ecol 36:467–478

    Article  PubMed  CAS  Google Scholar 

  • Wu ZR (1990) Oriental tobacco budworm. In: Wu FZ, Guan ZH (eds) Encyclopaedia of Chinese agriculture, entomology. Agriculture Press, Beijing. P, p 444

    Google Scholar 

  • Wu KJ, Gong PY (1997) A new and practical artificial diet for the cotton bollworm. Entomol Sin 4:277–282

    Google Scholar 

  • Yan ZG, Wang CZ (2005) Attractiveness of tobacco volatiles induced by Helicoverpa armigera and Helicoverpa assulta to Campoletis chlorideae. Chinese Sci Bull 50:1334–1341

    Article  CAS  Google Scholar 

  • Zhang AJ, Linn CJ, Wright S, Prokopy R, Reissig W, Roelofs WL (1999) Identification of a new blend of apple volatiles attractive to the apple maggot, Rhagoletis pomonella. J Chem Ecol 25:1221–1232

    Article  CAS  Google Scholar 

  • Zhao XC, Yan YH, Wang CZ (2006) Behavioral and electrophysiological responses of Helicoverpa assulta, H. armigera, their F1 hybrids and backcross progeny to female sex pheromones. J Comp Physiol A 192:1037–1047

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Rui Wang for technical guidance in wind tunnel and GC–EAD experiments and Yun-Hua Yan for assistance in insect rearing. This work was supported by the National Natural Science Foundation of China (grant no. 30925026, 30921063) and the Knowledge Innovation Program of the Chinese Academy of Sciences (grant no. KSCX2-EW-N-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Zhu Wang.

Additional information

Handling Editor: Anna-Karin Borg-Karlson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, JG., Huang, LQ. & Wang, CZ. Electrophysiological and behavioral responses of Helicoverpa assulta (Lepidoptera: Noctuidae) to tobacco volatiles. Arthropod-Plant Interactions 6, 375–384 (2012). https://doi.org/10.1007/s11829-012-9190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-012-9190-7

Keywords

Navigation