Skip to main content
Log in

Induced mutations affecting pollinator choice in Mimulus lewisii (Phrymaceae)

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The flowering plants are one of the most phenotypically varied and wide-ranging groups of organisms on earth, and yet, we have limited understanding of the contribution of animal pollinators to the diversification of floral form. To explore the interaction between variation in floral form and pollinator behavior, we observed the foraging behavior of bumblebees (Bombus impatiens) when presented with both wild-type Mimulus lewisii plants and each of three chemically induced single-locus mutants with altered floral phenotypes, including loss of the three lower petals, loss of nectar guides, and a change in petal color patterning. We found that each of the mutants attracted successful pollinator visits at just 29–80% of the rate relative to wild-type flowers, suggesting that effective recruitment of bumblebee pollinators requires the landing platform provided by the lower petals, and visual cues provided by the nectar guides and petal color pattern. Since single-locus recessive mutations are capable of ablating the lower petals, nectar guides, and color pattern, such changes in floral form provide insight into the driving forces behind plant adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aigner PA (2001) Optimality modeling and fitness trade-offs: when should plants become pollinator specialists? OIKOS 95:177–184

    Article  Google Scholar 

  • Ando T, Nomura M, Tsukahara J, Watanabe H, Kokubun H, Tsukamoto T, Hashimoto G, Marchesi E, Kitching IJ (2001) Reproductive isolation in a native poulation of Petunia sensu Jussieu (Solanaceae). Ann Bot 88:403–413

    Article  Google Scholar 

  • Armbruster WS (1988) Mulitlevel comparative analysis of the morphology, function, and evolution of Dalechampia blossoms. Ecology 69:1746–1761

    Article  Google Scholar 

  • Armbruster WS, Muchhala N (2009) Associations between floral specialization and species diversity: cause, effect, or correlation? Evol Ecol 23:159–179

    Article  Google Scholar 

  • Beardsley PM, Yen A, Olmstead RG (2003) AFLP phylogeny of Mimulus section Erythranthe and the evolution of hummingbird pollination. Evolution 57:1397–1410

    PubMed  CAS  Google Scholar 

  • Bradshaw HD Jr, Schemske DW (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426:176–178

    Article  PubMed  CAS  Google Scholar 

  • Campbell DR, Waser NM, Price MV (1996) Mechanisms of hummingbird-mediated selection for flower width in Ipomopsis aggregata. Ecology 77:1463–1472

    Article  Google Scholar 

  • Castellanos MC, Wilson P, Thomson JD (2004) ‘Anti-bee’ and ‘pro-bird’ changes during the evolution of hummingbird pollination in Penstemon flowers. J Evol Biol 17:876–885

    Article  PubMed  CAS  Google Scholar 

  • Cnaani J, Thomson JD, Papaj DR (2006) Flower choice and learning in foraging bumblebees: effects of variation in nectar volume and concentration. Ethology 112:278–285

    Article  Google Scholar 

  • Comba L, Corbet SA, Hunt H, Outram S, Parker JS, Glover BJ (2000) The role of genes influencing the corolla in pollination of Antirrhinum majus. Plant Cell Environ 23:639–647

    Article  CAS  Google Scholar 

  • Coyne J, Orr A (2004) Speciation. Sinauer Associates, Sunderland, Massachusetts, USA

    Google Scholar 

  • Crepet WL (1984) Advanced (constant) insect pollination mechanisms: pattern of evolution and implications vis-à-vis angiosperm diversity. Ann Mo Bot Gard 71:607–630

    Article  Google Scholar 

  • Cunningham JP, Moore CJ, Zalucki MP, West SA (2004) Learning, odour preference and flower foraging in moths. J Exp Biol 20:87–94

    Article  Google Scholar 

  • Dafni A, Kevan PG (1996) Floral symmetry and nectar guides: ontogenetic constraints from floral development, colour pattern rules and functional significance. Bot J Linn Soc 120:371–377

    Article  Google Scholar 

  • Darwin C (1877) The various contrivances by which orchids are fertilized by insects, 2nd edn. J. Murray, London, UK

    Google Scholar 

  • Dobson HEM, Danielson EM, Van Wesep ID (2008) Pollen odor chemicals as modulator of bumble bee foraging on Rosa rugosa Thunb. (Rosaceae). Plant Species Biol 14:153–166

    Article  Google Scholar 

  • Dodd ME, Silvertown J, Chase MW (1999) Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53:732–744

    Article  Google Scholar 

  • Dyer AG, Whitney HM, Arnold SEJ, Glover BJ, Chittka L (2007) Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebe perception o Antirrhinum majus flower colour. Arthropod Plant Interact 1:45–55

    Article  Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Fenster CB, Cheely G, Dudash MR, Reynolds RJ (2006) Nectar reward and advertisement in hummingbird-pollinated Silene virginica (Caryophyllaceae). Am J Bot 93:1800–1807

    Article  PubMed  Google Scholar 

  • Fulton M, Hodges SA (1999) Floral isolation between Aquilegia formosa and Aquilegia pubescens. Proc Biol Sci 266:2247–2252

    Article  Google Scholar 

  • Galen C, Cuba J (2001) Down the tube: pollinators, predators, and the evolution of flower shape in the alpine skypilot, Polemonium viscosum. Evolution 55:1963–1971

    PubMed  CAS  Google Scholar 

  • Gegear RJ, Burns JG (2007) The birds, the bees, and the virtual flowers: can pollinator behavior drive ecological speciation in flowering plants? Am Nat 170:551–566

    Article  PubMed  Google Scholar 

  • Gegear RJ, Laverty TM (2005) Flower constancy in bumblebees: a test of the trait variability hypothesis. Anim Behav 69:939–949

    Article  Google Scholar 

  • Glover BJ, Martin C (1998) The role of petal cell shape and pigmentation in pollination success in Antirrhinum majus. Heredity 80:778–784

    Article  Google Scholar 

  • Gomez JM, Bosch J, Perfectti F, Fernández JD, Abdelaziz M, Camacho JPM (2008) Spatial variation in selection on corolla shape in a generalist plant is promoted by the preference patterns of its local pollinators. Proc Royal Soc B 275:2241–2249

    Article  Google Scholar 

  • Goulson D, Hawson SA, Stout JC (1998) Foraging bumblebees avoid flowers already visited by conspecifics or by other bumblebee species. Anim Behav 55:199–206

    Article  PubMed  Google Scholar 

  • Grant V (1949) Pollination systems as isolating mechanisms in angiosperms. Evolution 3:82–97

    Article  PubMed  CAS  Google Scholar 

  • Grant KA (1966) A hypothesis concerning the prevalence of red coloration in California hummingbird flowers. Am Nat 100:85–97

    Article  Google Scholar 

  • Grant V (1994) Modes and origins of mechanical and ethological isolation in angiosperms. Proc Natl Acad Sci USA 91:3–10

    Article  PubMed  CAS  Google Scholar 

  • Gumbert A (2000) Color choices by bumblebees (Bombus terrestris): innate preferences and generalization after learning. Behav Ecol Sociobiol 48:36–43

    Article  Google Scholar 

  • Heuschen B, Gumbert A, Lunau K (2005) A generalized mimicry system involving angiosperm flower colour, pollen, and bumblebees’ innate colour preferences. Plant Syst Evol 252:121–137

    Article  Google Scholar 

  • Hoballah ME, Gübitz T, Stuurman J, Broger L, Barone M, Mandel T, Dell’Olivo A, Arnold M, Kuhlemeier C (2007) Single gene-mediated shift in pollinator attraction in Petunia. Plant Cell 19:779–790

    Article  PubMed  CAS  Google Scholar 

  • Hodges SA, Whittall JB, Fulton M, Yang JY (2002) Genetics of floral traits influencing reproductive isolation between Aquilegia formosa and Aquilegia pubescens. Am Nat 159:S51–S60

    Article  PubMed  Google Scholar 

  • Hodges SA, Fulton M, Yang JY, Whittall JB (2003) Verne Grant and evolutionary studies of Aquilegia. New Phytol 161:113–120

    Article  Google Scholar 

  • Ishii HS (2006) Floral display size influences subsequent plant choice by bumble bees. Funct Ecol 20:233–238

    Article  Google Scholar 

  • Johnson SD, Dafni A (1998) Response of bee-flies to the shape and pattern of model flowers: implications for floral evolution in a Mediterranean herb. Funct Ecol 12:289–297

    Article  Google Scholar 

  • Johnson SD, Steiner KE (1997) Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution 51:45–53

    Article  Google Scholar 

  • Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. Trends Ecol Evol 15:140–143

    Article  PubMed  Google Scholar 

  • Johnson SD, Linder HP, Steiner KE (1998) Phylogeny and radiation of pollination systems in Disa (Orchidaceae). Am J Bot 85:402–411

    Article  PubMed  CAS  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kelber A (1997) Innate preferences for flower features in the hawkmoth Macroglossum stellatarum. J Exp Biol 200:827–836

    PubMed  Google Scholar 

  • Kimball S (2008) Links between floral morphology and floral visitors along an elevational gradient in a Penstemon hybrid zone. Oikos 117:1064–1074

    Article  Google Scholar 

  • Laverty TM (1994) Bumble bee learning and flower morphology. Anim Behav 47:531–545

    Article  Google Scholar 

  • Lunau K (2000) The ecology and evolution of visual pollen signals. Plant Syst Evol 222:89–111

    Article  Google Scholar 

  • Lunau K, Wacht S, Chittka L (1996) Colour choices of naive bumblebees and their implications for colour perception. J Comp Physiol [A] 178:477–489

    Google Scholar 

  • Makino TT, Sakai S (2007) Experience changes pollinator responses to floral display size: from size-based to reward-based foraging. Funct Ecol 21:854–863

    Article  Google Scholar 

  • Manning A (1956) The effects of honey-guides. Behaviour 9:114–139

    Article  Google Scholar 

  • Martin NH, Sapir Y, Arnold ML (2008) The genetic architecture of reproductive isolation in Louisiana irises: pollination syndromes and pollinator preferences. Evolution 62:740–752

    Article  PubMed  Google Scholar 

  • Medel R, Botto-Mahan C, Kalin-Arroyo M (2003) Pollinator-mediated selection on the nectar guide phenotype in the Andean monkey flower, Mimulus luteus. Ecology 84:1721–1732

    Article  Google Scholar 

  • Meléndez-Ackerman E, Campbell DR (1998) Adaptive significance of flower color and inter-trait correlations in an Ipomopsis hybrid zone. Evolution 52:1293–1303

    Article  Google Scholar 

  • Meléndez-Ackerman E, Campbell DR, Waser NM (1997) Hummingbird behavior and mechanisms of selection on flower color in Ipomopsis. Ecology 78:2532–2541

    Google Scholar 

  • Møller AP (1995) Bumblebee preference for symmetrical flowers. Proc Natl Acad Sci USA 92:2288–2292

    Article  PubMed  Google Scholar 

  • Penny JHJ (1983) Nectar guide colour contrast: a possible relationship with pollination strategy. New Phytol 95:707–721

    Article  Google Scholar 

  • Petrikin J, Wells H (1995) Honey bee (Apis mellifera) use of flower pigment patterns in making foraging choices. J Kans Entomol Soc 68:377–387

    Google Scholar 

  • Pohl M, Watolla T, Lunau K (2008) Anther-mimicking floral guides exploit a conflict between innate preference and learning in bumblebees (Bombus terrestris). Behav Ecol Sociobiol 63:295–302

    Article  Google Scholar 

  • Ramsey J, Bradshaw HD Jr, Schemske DW (2003) Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 57:1520–1534

    PubMed  Google Scholar 

  • Ricklefs RE, Renner SS (1994) Richness within families of flowering plants. Evolution 48:1619–1636

    Article  Google Scholar 

  • Riffell JA, Alarcón R, Abrell L, Davidowitz G, Bronstein JL, Hildebrand JG (2008) Behavioral consequences of innate preferences and olfactory learning in hawkmoth-flower interactions. Proc Natl Acad Sci USA 105:3404–3409

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Gironez MA, Santamaria L (2007) Resource competition, character displacement, and the evolution of deep corolla tubes. Am Nat 170:455–464

    Article  Google Scholar 

  • Sargent RD, Otto SP (2005) The role of local species abundance in the evolution of pollinator attraction in flowering plants. Am Nat 167:67–80

    Article  PubMed  Google Scholar 

  • Schemske DW, Bradshaw HD Jr (1999) Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc Natl Acad Sci USA 96:11910–11915

    Article  PubMed  CAS  Google Scholar 

  • Schemske DW, Horvitz CC (1984) Variation among floral visitors in pollination ability: a precondition for mutualism specialization. Science 225:519–521

    Article  PubMed  CAS  Google Scholar 

  • Schemske DW, Horvitz CC (1989) Temporal variation in selection on a floral character. Evolution 43:461–465

    Article  Google Scholar 

  • Scora RW (1964) Dependency of pollination on patterns in Monarda (Labiatae). Nature 204:1011–1012

    Article  Google Scholar 

  • Shang Y, Venail J, Mackay S, Bailey PC, Schwinn KE, Jameson PE, Martin CR, Davies KM (2011) The molecular basis for venation patterning of pigmentation and its effects on pollinator attration in flowers of Antirrhinum. New Phytol 189:602–615

    Article  PubMed  CAS  Google Scholar 

  • Smith SDW, Ané C, Baum DA (2008) The role of pollinator shifts in the floral diversification of Iochroma (Solanaceae). Evolution 62:793–806

    Article  PubMed  Google Scholar 

  • Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Annu Rev Ecol Syst 1:307–326

    Article  Google Scholar 

  • Streisfeld MA, Kohn JR (2006) Environment and pollinator-mediated selection on parapatric floral races of Mimulus aurantiacus. J Evol Biol 20:122–132

    Article  Google Scholar 

  • Suárez LH, Gonzáles WL, Gianoli E (2009) Foliar damage modifies floral attractiveness to pollinators in Alstroemeria exerens. Evol Ecol 23:545–555

    Article  Google Scholar 

  • Sutherland SD, Vickery RK Jr (1993) On the relative importance of floral color, shape, and nectar rewards in attracting pollinators to Mimulus. Great Basin Nat 53:107–117

    Google Scholar 

  • Thomson JD, Wilson P (2008) Explaining evolutionary shifts between bee and hummingbird pollination: convergence, divergence, and directionality. Int J Plant Sci 169:23–38

    Article  Google Scholar 

  • Waser NM (1986) Flower constancy: definition, cause, and measurement. Am Nat 127:593–603

    Article  Google Scholar 

  • Waser NM (1998) Angiosperm speciation, and the nature of species boundaries. Oikos 82:198–201

    Article  Google Scholar 

  • Waser NM, Price MV (1985) The effect of nectar guides on pollinator preference: experimental studies with a montane herb. Oecologia 67:121–126

    Article  Google Scholar 

  • Whibley AC, Langlade NB, Andalo C, Hanna AI, Bangham A, Thébaud C, Coen E (2006) Evolutionary paths underlying flower color variation in Antirrhinum. Science 313:963–966

    Article  PubMed  CAS  Google Scholar 

  • Whitney HM, Glover BJ (2007) Morphology and development of floral features recognized by pollinators. Arthropod Plant Interact 1:147–158

    Article  Google Scholar 

  • Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447:706–710

    Article  PubMed  CAS  Google Scholar 

  • Wilbert SM, Schemske DW, Bradshaw HD Jr (2007) Floral anthocyanins from two monkeyflower species with different pollinators. Biochem Syst Ecol 25:437–443

    Article  Google Scholar 

  • Wilson P, Stine M (1996) Floral constancy in bumble bees: handling efficiency or perceptual conditioning. Oecologia 106:493–499

    Article  Google Scholar 

  • Wilson P, Castellanos MC, Hogue JN, Thomson JD, Armbruster WS (2004) A multivariate search for pollination syndromes among penstemons. OIKOS 104:345–361

    Article  Google Scholar 

  • Wu CA, Lowry DB, Cooley AM, Wright KM, Lee YW, Willis JH (2008) Mimulus is an emerging model system for the integration of ecological and genomic studies. Heredity 100:220–230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Brian Watson, Doug Ewing, Jeanette Milne, Paul Beeman, Maria Olegovna Syropyatova, and Erin Forbush for extraordinary plant care. Brian Christensen, Dan Smith, and Will Owen assisted in pollinator observations. Verónica DiStilio and Josh Tewksbury read earlier versions of the manuscript and provided valuable critique. This work was funded by a Frye-Hotson-Rigg Writing Fellowship and a National Science Foundation FIBR grant 0328636.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina R. Owen.

Additional information

Handling Editor: Steven Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, C.R., Bradshaw, H.D. Induced mutations affecting pollinator choice in Mimulus lewisii (Phrymaceae). Arthropod-Plant Interactions 5, 235–244 (2011). https://doi.org/10.1007/s11829-011-9133-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-011-9133-8

Keywords

Navigation