Skip to main content
Log in

Foliar damage modifies floral attractiveness to pollinators in Alstroemeria exerens

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Pollination is a requisite for sexual reproduction in plants and its success may determine the reproductive output of individuals. Pollinator preference for some floral designs or displays that are lacking or poorly developed in focal plants may constrain the pollination process. Foliar herbivory may affect the expression of floral traits, thus reducing pollinator attraction. Natural populations of the Andean species Alstroemeria exerens (Alstromeriaceae) in central Chile show high levels of foliar herbivory, and floral traits show phenotypic variation. In the present field study, we addressed the attractive role of floral traits in A. exerens and the effect of foliar damage on them. Particularly, we posed the following questions: (1) Is there an association between floral display and design traits and the number and duration of pollinator visits? and (2) Does foliar damage affect the floral traits associated with pollinator visitation? To assess the attractiveness of floral traits for pollinators, we recorded the number and duration of visits in 101 focal plants. To evaluate the effects of foliar damage on floral traits, 100 plants of similar size were randomly assigned to control or damage groups during early bud development. Damaged plants were clipped using scissors (50% of leaf area) and control plants were manually excluded from natural herbivores (<5% of leaf area eaten). During the peak of flowering, we recorded the number of open flowers, and estimated corolla and nectar guide areas. The number and duration of pollinator visits was statistically associated with floral design and display traits. Plants with larger displays, corollas and nectar guide areas received more visits. Visits lasted longer as display increases. In addition, foliar damage affected attractive traits. Damaged plants had fewer open flowers and smaller nectar guide areas. We conclude that foliar damage affects plant attractiveness for pollinators and hence may indirectly affect plant fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizen MA, Raffaele E (1996) Nectar production and pollination in Astroemeria aurea: responses to level and pattern of flowering shoot defoliation. Oikos 76:312–322

    Article  Google Scholar 

  • Aizen MA, Basilio A (1998) Within and among flower sex-phase distribution in Alstroemeria aurea (Alstromeriaceae). Can J Bot 73:1986–1994

    Article  Google Scholar 

  • Anderson B, Cole WW, Barrett SCH (2005) Specialized bird perch aids cross-pollination. Nature 435:41–42

    Article  PubMed  CAS  Google Scholar 

  • Arroyo MTK, Armesto J, Primack R (1982) Tendencias altitudinales y latitudinales en mecanismos de polinización en la zona andina de los Andes Templados de Sudamérica. Rev Chil Hist Nat 56:159–180

    Google Scholar 

  • Ashman TL, Stanton M (1991) Seasonal variation in pollination dynamics of sexually dimorphic Sidalcea oregana spp. Spicata (Malvaceae). Ecology 72:993–1003.

    Article  Google Scholar 

  • Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash M, Johnston M, Mazer SJ, Mitchel RJ, Morgan MT, Wilson WG (2004). Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421

    Article  Google Scholar 

  • Bell G (1985) On the function of flowers. Proc R Soc Lond B Biol Sci 224:223–265

    Article  Google Scholar 

  • Bergelson J, Crawley MJ (1992) Herbivory and Ipomopsis aggregata: The disadvantages of being eaten. Am Nat 139:870–882

    Article  Google Scholar 

  • Botto-Mahan C, Ojeda-Camacho M (2000) The importance of floral damage for pollinator visitation in Alstroemeria ligtu L. Rev Chil Ent 26:73–76

    Google Scholar 

  • Campbell DR, Waser NM, Price MV et al (1991) Components of phenotypic selection: pollen export and flower corolla width in Ipomopsis aggregata. Evolution 45:1458–1467

    Article  Google Scholar 

  • Cavieres L, Peñaloza AP, Arroyo MTK (1998) Efectos del tamaño floral y densidad de flores en la visita de insectos polinizadores en Alstroemeria pallida Graham (Amaryllidaceae). Gayana Botánica 55:1–10

    Google Scholar 

  • Celedón-Neghme C, Gonzáles WL, Gianoli E (2007) Cost and benefits of attractive floral traits in the annual species Madia sativa (Asteraceae). Evol Ecol 21:247–257

    Article  Google Scholar 

  • Cohen D, Shmida A (1993) The evolution of flower display and reward. Evol Biol 27:197–243

    Google Scholar 

  • Conner JK, Rush S (1996) Effects of flower size and number on pollinator visitation to wild radish Raphanus raphanistrum. Oecologia 105:509–516

    Article  Google Scholar 

  • Conner JK, Davis R, Rush S (1995) The effect of wild radish floral morphology on pollination efficiency by four taxa of pollinators. Oecologia. 104:234–245

    Article  Google Scholar 

  • Cresswell JE, Galen C (1991) Frequency-dependent selection and adaptive surfaces for floral character combination: The pollination of Polemonium viscosum. Am Nat 138:1342–1353

    Article  Google Scholar 

  • Dafni A (1992) Pollination ecology. A practical approach. Oxford University Press, Oxford

    Google Scholar 

  • Dafni A, Kevan PG (1997) Flower size and shape: implications in pollination. Isr J Plant Sci 45:201–211

    Google Scholar 

  • Elle E, Hare JD (2002) Environmental induced variation in floral traits affects the mating system in Datura wrightii. Funct Ecol 16:79–88

    Article  Google Scholar 

  • Euler M, Baldwin IT (1996) The chemistry of defense and apparency in the corollas of Nicotiana attenuata. Oecologia. 107:102–112

    Article  Google Scholar 

  • Frazee JE, Marquis RJ (1994) Environmental contribution to floral trait variation in Chamaecrista fasciculate (Fabaceae: Caesalpinoideae). Am J Bot 81:206–215

    Article  Google Scholar 

  • Galen C (1985) Regulation of seed set in Polemonium viscosum: Floral scents, pollination and resources. Ecology 66:792–797

    Article  Google Scholar 

  • Galen C, Newport MEA (1987) Bumble bee behavior and selection on flower size in the sky pilot, Polemonium viscosum. Oecologia. 74:20–23

    Article  Google Scholar 

  • Gómez JM (2003) Herbivory reduces the strength of pollinator-mediated selection in the Mediterranean herb Erysium mediohispanicum: consequences for plant specialization. Am Nat 162:242–256

    Article  PubMed  Google Scholar 

  • Gotelli NJ, Ellison AM (2004) A primer of ecological statistics. Sinauer Associates, Sunderland

    Google Scholar 

  • Gould JL (1985) How bees remember flower shapes. Science 227:1492–1494

    Article  PubMed  Google Scholar 

  • Hambäck PA (2001) Direct and indirect effects of herbivory: feeding by spittlebugs reduces pollinator visitation rates and seedset of Rudbeckia hirta. Ecoscience 8:45–50

    Google Scholar 

  • Herrera CM (1987) Components of pollinator “quality”: comparative analysis of a diverse insect assemblage. Oikos 50:79–90

    Article  Google Scholar 

  • Johnson SD, Dafni A (1998) Response of bee-flies to the shape and pattern of model flowers: implications for floral evolution in a Mediterranean herb. Funct Ecol 12:289–297

    Article  Google Scholar 

  • Johnson SG, Delph LF, Elderkin CL (1995) The effect of petal size manipulation on pollen removal, seed set, and insect visitor behavior in Campanula americana. Oecologia 102:174–179

    Article  Google Scholar 

  • Johnston MO (1991) Natural selection on floral traits in two species of Lobelia with different pollinators. Evolution 45:1468–1479

    Article  Google Scholar 

  • Juenger T, Bergelson J (1997) Pollen resource limitation of compensation to herbivory in Scarlet Gilia, Ipomopsis aggregata. Ecology 78:1684–1695

    Google Scholar 

  • Juenger T, Bergelson J (2000) Does early season browsing influence the effect of self-pollination in Scarlet Gilia? Ecology 81:41–48

    Google Scholar 

  • Karban R, Strauss SY (1993) Effects of herbivores on growth and reproduction of their perennial host, Erigeron glaucus. Ecology 74:39–46

    Article  Google Scholar 

  • Karron JD, Mitchell RJ, Holmaquist KG et al (2004) The influence of floral display sizes on selfing rates in Mimulus ringens. Heredity 92:242–248

    Article  PubMed  CAS  Google Scholar 

  • Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR, Johnston MO, Mitchell RJ, Ashman T-L (2005) Pollen limitation of plant reproduction: pattern and process. Annu Rev Ecol Evol Syst 36:467–497

    Article  Google Scholar 

  • Lehtilä K, Strauss SY (1997) Leaf damage by herbivores affects attractiveness to pollinators in wild radish, Raphanus raphanistrum. Oecologia 111:396–403

    Article  Google Scholar 

  • Marquis RJ (1992) Selective impact of herbivores. In: Fritz R, Simms E (eds) Plant resistance to herbivores and pathogens. Ecology, evolution and genetics. The University of Chicago Press, Chicago

    Google Scholar 

  • Medel R, Botto-Mahan C, Arroyo MTK (2003) Pollinator-mediated selection on the nectar guide phenotype in the Andean monkey flower, Mimulus luteus. Ecology. 84:1721–1732

    Article  Google Scholar 

  • Møller AP, Erickson M (1995) Pollinator preference for symmetrical flowers and sexual selection in plants. Oikos 73:15–22

    Article  Google Scholar 

  • Mothershead K, Marquis RJ (2000) Fitness impacts of herbivory through indirect effects on plant–pollinator interactions in Oenothera macrocarpa. Ecology 81:30–40

    Google Scholar 

  • Muñoz M, Moreira A (2003) Alstroemerias de Chile. Diversidad, distribución y conservación. Taller La Era. Santiago de Chile

  • Ohashi KM, Yahara T (1998) Effects of variation in flower number on pollinator visits in Cirsium purpuratum (Asteraceae). Am J Bot 85:219–224

    Article  Google Scholar 

  • Olsen KM (1997) Pollination effectiveness and pollinator importance in a population of Heterotheca subaxilaris (Asteraceae). Oecologia 109:114–121

    Google Scholar 

  • Pellmyr O (2002) Pollination by animals. In: Herrera CM, Pellmyr O (eds) Plant–animal interactions. An evolutionary approach. Blackwell Science, Oxford

    Google Scholar 

  • Rougier D (2005) Evolución de caracteres florales relacionados con el sistema de reproducción en el género Alstroemeria L. (Alstromeriaceae) en Chile. Ph. D. Dissertation, Universidad de Chile

  • Scheiner SM (1993) MANOVA: multiple response variables and multispecies interactions. In: Scheiner SM, Gurecitch J (eds) Design and analysis of ecological experiments. Chapman & Hall, New York

    Google Scholar 

  • Schemske DW, Horvitz CC (1984) Variation among floral visitors in pollination ability: a precondition for mutualism specialization. Science 225:519–521

    Article  PubMed  Google Scholar 

  • Sharaf KE, Price MV (2004) Does pollination limit tolerance to browsing in Ipomopsis aggregata? Oecologia 138:396–404

    Article  PubMed  Google Scholar 

  • Snow AA, Spira TP, Simpson R et al (1996) The ecology of geitonogamous pollination. In: Lloyd DG, Barrett SCH (eds) Floral biology. Studies on floral evolution in animal-pollinated plants. Champman & Hall, New York

    Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci USA 98:3898–3903

    Article  PubMed  CAS  Google Scholar 

  • Stanton ML, Snow AA, Handel SN (1986) Floral evolution: Attractiveness to pollinators increases male fitness. Science 232:1625–1627

    Article  PubMed  Google Scholar 

  • Steets JA, Hamrick JL, Ashman T-L (2006) Consequences of vegetative herbivory for maintenance of intermediate outcrossing in an annual plant. Ecology 87:2717–2727

    Article  PubMed  Google Scholar 

  • Steets JA, Wolf DE, Auld JR, Ashman T-L (2007) The role of natural enemies in the expression and evolution of mixed mating in hermaphroditic plants and animals. Evolution 61:2043–2055

    Article  PubMed  Google Scholar 

  • Strauss SY (1997) Floral characters link herbivores, pollinators and plant fitness. Ecology 78:1640–1645

    Article  Google Scholar 

  • Strauss SY, Conner JK, Rush SL (1996) Foliar herbivory affects floral characters and plant attractiveness: implications for male and female plant fitness. Am Nat 147:1098–1107

    Article  Google Scholar 

  • Tiffin PL, Inouye BD (2000) Measuring tolerance to herbivory: accuracy and precision of estimates made using natural versus imposed damage. Evolution 54:1024–1029

    PubMed  CAS  Google Scholar 

  • Wilcock C, Neiland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7:270–277

    Article  PubMed  CAS  Google Scholar 

  • Wisdom CS, Crawford CS, Aldon EF (1989) Influence of insect herbivory on photosynthetic area and reproduction in Gutierrezia species. J Ecol 77:685–692

    Article  Google Scholar 

  • Zamora R, Hódar JA, Gómez JM (1999) Plant–herbivore interaction: beyond a binary vision. In: Pugnaire F, Valladares F (eds) Handbook of functional plant ecology. Marcel Dekker Inc., New York

    Google Scholar 

Download references

Acknowledgments

We are grateful to P. Bocaz, A. A. Muñoz and C. Torres for their advice on pollinator identification. N. Peña, S. González and M. González-Teuber provided valuable help in all stages of field work. This manuscript was improved by comments from Paulina Salas and two anonymous reviewers. Partial financial support for field work was provided by FONDECYT 1030702 (EG). LSH thanks Graduates School of Universidad de Concepción and CONICYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena H. Suárez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suárez, L.H., Gonzáles, W.L. & Gianoli, E. Foliar damage modifies floral attractiveness to pollinators in Alstroemeria exerens . Evol Ecol 23, 545–555 (2009). https://doi.org/10.1007/s10682-008-9254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-008-9254-4

Keywords

Navigation