Skip to main content
Log in

Jatropha curcas: a review on biotechnological status and challenges

  • Review Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Plant tissue culture and molecular biology techniques are powerful tools of biotechnology that can complement conventional breeding, expedite crop improvement and meet the demand for availability of uniform clones in large numbers. Jatropha curcas Linn., a non-edible, eco-friendly, non-toxic, biodegradable fuel-producing plant has attracted worldwide attention as an alternate sustainable energy source for the future. This review presents a consolidated account of biotechnological interventions made in J. curcas over the decades and focuses on contemporary information and trends of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adholeya A, Singh R (2006) Quality considerations in Jatropha curcas. In: Bhojvaid PP (ed) Biofuels: towards a greener and secure energy future. TERI Press, New Delhi, pp 173–180

  • Azam MM, Waris A, Nahar NM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy 29:293–302

    Google Scholar 

  • Basha SD, Sujatha M (2007a) Genetic analysis of Jatropha species and interspecific hybrids of Jatropha curcas using nuclear and organelle specific markers. Euphytica 168:197–214

    Google Scholar 

  • Basha SD, Sujatha M (2007b) Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156:375–386

    CAS  Google Scholar 

  • Basha SD, Franis G, Makkar HPS, Becker K, Sujatha M (2009) A comparative study of biochemical traits and molecular markers for assessment of genetic relationships between Jatropha curcas L. germplasm from different countries. Plant Sci 176:812–823

    CAS  Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge

  • Bhansali R (1990) Somatic embryogenesis and regeneration of plantlets in pomegranate. Ann Bot 66:249–254

    Google Scholar 

  • Boora KS, Dhollin RS (2010) Evaluation of genetic diversity in Jatropha curcas L. using RAPD markers. Ind J Biotech 9:50–57

    Google Scholar 

  • Cabral GB, Aragao FJL, Matsumoto K, Monte Neshich DC, Rech EL (1992) First international scientific meeting of the Cassava. Biotechnology Network (CBN) Cartagena Colombia, Abstracts: 48

  • Caetano-Anolles G, Gresshoff PM (1997) DNA markers protocols applications and overviews. Wiley-Liss, New York

    Google Scholar 

  • Cahoon EB (2003) Genetic enhancement of soybean oil for industrial uses: prospects and challenges. AgBioForum 6:11–13

    Google Scholar 

  • Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnologies. Trends Biotechnol 23:180–185

    PubMed  CAS  Google Scholar 

  • Carron MP, Enjalric F (1982) Studies on vegetative propagation of Hevea brasiliensis by somatic embryogenesis and in vitro Microcutting. In: Fujiwara A (ed) Plant tissue culture, Maruzen, Tokyo, pp 751–752

  • Carron MP, Deschamps A, Enjalric F, Lardet L (1985) Vegetative in vitro propagation by microcuttings of selected rubber tree: a wide spread technique before 2000. In: Proceedings of 1st international rubber tissue culture workshop, Kuala Lumpur, pp 22–26

  • Carron MP, Etienne H, Lardet L, Campagha S, Persin Y, Leconte A, Chaine C (1995) Somatic embryogenesis in Rubber (Hevea brasiliensis Mull.-Arg.) In: Jain SM, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 2. Kluwer, Dordrecht, pp 117–136

  • Carvalho CR, Clarindo WR, Praça MM, Araújo FS, Carels N (2008) Genome size base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617

    CAS  Google Scholar 

  • Chan K (2003) Some aspects of toxic contaminants in herbal medicines. Chemosphere 52:1361–1371

    PubMed  CAS  Google Scholar 

  • Cristi Y (2007) Biodiesel from microalgae. Biotech Adv 25:294–306

    Google Scholar 

  • D’Amato F (1975) The problem of genetic stability in plant tissue and cell cultures. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, pp 338–348

  • Da Camara Machado A, Frick NS, Kremen R, Katinger H, da Camara Machado ML (1997) Biotechnological approaches to the improvement of Jatropha curcas. In Proceedings of the International Symposium on Jatropha, Nicaragua

  • Dahmer N, Wittmann MTS, dos Santos Dias LA (2009) Chromosome numbers of Jatropha curcas L.: an important agrofuel plant. Crop Breed Appl Biotechnol 9:386–389

    Google Scholar 

  • Dandekar AM (2003) Techniques for manipulating quality and productivity traits in horticultural crops. Acta Hort 625:293–305

    CAS  Google Scholar 

  • Das P, Rout GR, Das AB (1993) Somatic embryogenesis in callus cultures of Mussaenda erythrophylla cvs. Plant Cell Tissue Organ Cult 35:199–201

    CAS  Google Scholar 

  • Datta MM, Mukherjee P, Ghosh B, Jha TB (2007) In vitro clonal propagation of biodiesel plant (Jatropha curcas L.) Curr Sci 93:1438–1442

    Google Scholar 

  • De Jong AJ, Schmidt EDL, de Vries SC (1993) Early events in higher plant embryogenesis. Plant Mol Biol 22:367–377

    PubMed  Google Scholar 

  • Dehgan B (1984) Phylogenetic significance of interspecific hybridization in Jatropha (Euphorbiaceae). Syst Bot 9:467–478

    Google Scholar 

  • Dehgan B, Webster GL (1979) Morphology and infrageneric relationships of the Genus Jatropha (Euphorbiaceae). Univ California Pub Bot 74:67–73

    Google Scholar 

  • Demirbas A (2003) Chemical and fuel properties of seventeen vegetable oils. Energy Source 25:721–728

    CAS  Google Scholar 

  • Demirbas A (2006) Energy priorities and new energy strategies. Energy Edu Sci Technol 16:53–109

    Google Scholar 

  • Deore A, Johnson TS (2008a) Occurrence of vivipary in Jatropha curcas L. Curr Sci 95:321–322

    Google Scholar 

  • Deore A, Johnson TS (2008b) High-frequency plant regeneration from leaf-disc cultures of Jatropha curcas L.: an important biodiesel. Plant Biotechnol Rep 2:7–11

    Google Scholar 

  • Divakara BN, Upadhyaya HD, Wani SP, Laxmipathi Gowda CL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87:732–742

    Google Scholar 

  • Dudits D, Bogre L, Gyorgyey J (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci 99:475–484

    Google Scholar 

  • Edem DO (2002) Palm oil: biochemical, physiological, nutritional, hematological, and toxicological aspects: a review. Plant Foods Hum Nutr 57:319–341

    PubMed  CAS  Google Scholar 

  • Fedorov A (1969) Chromosome numbers of flowering plants. Academy of Sciences of the USSR, Leningrad

  • Filho G, Rocha N, Brodzki D, Djega-Mariadassou G (1992) Formation of alkanes, alkylcycloalkanes and alkylbenzenes during the catalytic hydrocracking of vegetable oils. Fuel 72(4):543–549

    Google Scholar 

  • Francis G, Edinger R, Becker K (2005) A concept for simultaneous wasteland reclamation, fuel production, and socioeconomic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Nat Resour Forum 29:12–24

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158

    PubMed  CAS  Google Scholar 

  • Ganesh RS, Parthiban KT, Senthil KR, Thiruvengadam V, Paramathma M (2008) Genetic diversity among Jatropha species as reveled by RAPD markers. Genet Resour Crop Evol 55:803–809

    Google Scholar 

  • George EF, Hall M A, De Klerk GJ (2008) Plant propagation by tissue culture. The background, 3rd edn, vol 1. Springer, Berlin

  • Gunstone FD (2004) Rapeseed and Canola Oil: Production, Processing, properties and uses. Blackwell, London

  • Gupta S, Srivastava M, Mishra GP, Naik PK, Chauhan RS, Tiwari SK, Kumar M, Singh R (2008) Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. Afr J Biotech 7(23):4230–4243

    CAS  Google Scholar 

  • Haberlandt G (1902) Culturversuche mit isolierten. Pflanzenzellen Sitzungsber Akad Wiss Wien Math Nat Cl III Abt 1:69-91

  • IPCN (2009) Index to Plant Chromosome Numbers. Available at: http://mobot.mobot.org/W3T/Search/ipcn.html

  • Isigigur A, Karaosmonoglu F, Aksoy HA (1994) Methyl ester from safflower seed oil of Turkish origin as a biofuel for diesel engines. Appl Biochem Biotechnol 45:103–112

    Google Scholar 

  • Jha TB, Mukherjee P, Datta MM (2007) Somatic embryogenesis in Jatropha curcas Linn., an important biofuel plant. Plant Biotech Rep 1:135–140

    Google Scholar 

  • Jin S, Zhang X, Liang S, Nie Y, Guo, Huang C (2005) Factors affecting transformation efficiency of embryogenic callus of upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 81:229–237

  • Jones N, Miller JH (1992) Jatropha curcas—a multipurpose species for problematic sites. Land Resour Ser 1:1–12

    Google Scholar 

  • Jongschaap REE, Corré WJ, Bindraban PS, Brandenburg WA (2007) Claims and facts on Jatropha curcas L. Wageningen, The Netherlands: Plant Research International. http://www.factfuels.org/media_en/Claims_and_Facts_on_Jatropha_WUR?session=isgsklbna58j7grrfst888n5r7

  • Joshi K, Chavan P, Warude D, Patwardhan P (2004) Molecular markers in herbal drug technology. Curr Sci 87:159–165

    CAS  Google Scholar 

  • Kaewpoo M, Te-Chato S (2010) Study on ploidy level of micropropagated Jatropha curcas L. via flow cytometry. J Agric Tech 6:391–400

    Google Scholar 

  • Kalimuthu K, Paulsamy S, Senthilkumar R, Sathya M (2007) In vitro propagation of the biodiesel plant Jatropha curcas L. Plant Tissue Cult Biotech 17:137–147

    Google Scholar 

  • Kalscheuer R, Luftmann H, Steinbüchel A (2004) Synthesis of novel lipids in Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl Environ Microbiol 70:7119–7125

    PubMed  CAS  Google Scholar 

  • Kalscheuer R, Stöl T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Google Scholar 

  • Karmee SK, Chadha A (2005) Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour Technol 96:1425–1429

    PubMed  CAS  Google Scholar 

  • Khemkladngoen N, Caragena J, Shibagaki N, Fukui K (2011) Adventitious shoot regeneration from juvenile cotyledons of a biodiesel producing plant, Jatropha curcas L. J Biosci Bioeng 111:67–70

    PubMed  CAS  Google Scholar 

  • Khurana-Kaul V, Kachhwaha S, Kothari SL (2010) Direct shoot regeneration from leaf explants of Jatropha curcas in response to thidiazuron and high copper contents in the medium. Biol Plant 54:369–372

    CAS  Google Scholar 

  • Komamine A, Murata N, Nomura K (2005) Mechanisms of somatic embryogenesis in carrot suspension cultures—morphology, physiology, biochemistry, and molecular biology. In Vitro Cell Dev Biol Plant 41:6–10

    CAS  Google Scholar 

  • Kothari SL, Varshney A (1998) Morphogenesis in long term maintained immature embryo derived callus of wheat (Triticum aestivum L.)—histological evidence for both somatic embryogenesis and organogenesis. Plant Biochem Biotech 7:93–98

    Google Scholar 

  • Kumar J, Gupta PK (2008) Molecular approaches for improvement of medicinal and aromatic plants. Plant Biotech Rep 2:93–112

    Google Scholar 

  • Kumar N, Reddy MP (2010) Plant regeneration through the direct induction of shoot buds from petiole explants of Jatropha curcas: a biofuel plant. Ann Appl Biol 156:367–375

    CAS  Google Scholar 

  • Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.). A review. Ind Crop Prod 28:1–10

    CAS  Google Scholar 

  • Kumar RV, Tripathi YK, Shukla P, Ahlawat SP, Gupta VK (2009) Genetic diversity and relationships among germplasm of Jatropha curcas L, revealed by RAPDs. Trees 23:1075–1079

    CAS  Google Scholar 

  • Kumar N, Vijay Anand KG, Reddy MP (2010a) Shoot regeneration from cotyledonary leaf explants of Jatropha curcas: a biodiesel plant. Acta Physiol Plant 32:917–924

    Google Scholar 

  • Kumar N, Vijay Anand KG, Sudheer Pamidimarri DVN, Sarkar T, Reddy MP, Radhakrishnan T, Kaul T, Reddy MK, Sopori SK (2010b) Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. Ind Crop Prod 32:41–47

    CAS  Google Scholar 

  • Kumar N, Vijay Anand KG, Reddy MP (2011) In vitro regeneration from petiole explants of non-toxic Jatropha curcas. Ind Crop Prod 33:146–151

    CAS  Google Scholar 

  • Levine M (1947) Differentiation of carrot root tissue grown in culture. Bull Torrey Bot Club 74:321

    Google Scholar 

  • Li MR, Li HQ, Wu GJ (2006a) Study on factors influencing Agrobacterium-mediated transformation of Jatropha curcas. Fen Zi Xi Bao Sheng Wu Xue Bao 39:83–89

    PubMed  CAS  Google Scholar 

  • Li ZT, Dhekeny S, Dutt M, Van Anan M, Tattersll MJ, Kelley KT, Gray J (2006b) Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev Biol Plant 42:220–227

    CAS  Google Scholar 

  • Li M, Li H, Jiang H, Pan X, Wu G (2008) Establishment of an Agrobacterium mediated cotyledon disc transformation method for J. curcas. Plant Cell Tissue Organ Cult 92:173–181

    CAS  Google Scholar 

  • Litz RE, Gray DJ (1995) Somatic embryogenesis for agricultural improvement. World J Microbiol Biotech 11:416–425

    Google Scholar 

  • Liu W, Xu Z, Chua N (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630

    PubMed  CAS  Google Scholar 

  • Lo Schiavo F (1989) DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77:325–331

    CAS  Google Scholar 

  • Lohia AK (2006) Jatropha for sustainable employment, energy security, and for checking soil erosion. In: Bhojvaid PP (ed) Biofuels: towards a greener and secure energy future. TERI Press, New Delhi, pp 255–262

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    CAS  Google Scholar 

  • Mandal R, Mithra P (2006) The Indian biofuels programme: the National Mission on Bio-diesel. In: Bhojvaid PP (ed) Biofuels: towards a greener and secure energy future. TERI Press, New Delhi, pp 13–22

  • Martin KP (2003) Plant regeneration through direct somatic embryogenesis on seed coat explants of cashew (Anacardium occidentale L.). Sci Hort 98:299–304

    CAS  Google Scholar 

  • Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotech 110:85–93

    CAS  Google Scholar 

  • Michaux-Ferriere N, Grout H, Carron MP (1992) Origin and ontogenesis of somatic embryos in Hevea brasiliensis (Euphorbiaceae). Am J Bot 79:174–180

    Google Scholar 

  • Mittelbach M, Remschmidt C (2004) Biodiesel: the comprehensive handbook. Boersedruck, Vienna

  • Montes LR, Azurdia C, Jongschaap REE, Van Loo EN, Barillas E, Visser R, Mejia L (2008) Global evaluation of genetic variability in Jatropha curcas. http://www.pri.wur.nl/NR/rdonlyres/90AF26A1-47D5-4F2F-9E96-D413C2933685/70112/PosterMontesHR.pdf

  • Mukherjee P, Jha TB (2009) Biotechnological improvement of a biofuel crop—Jatropha curcas. In: Wright JH, Evans DA (eds) New research in biofuels. NOVA Science Publishers, New York, pp 31–52

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–479

    CAS  Google Scholar 

  • Pamidiamarri DVNS, Pandya N, Reddy MP, Radhakrishnan T (2008) Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and AFLP: genetic divergence and phylogenic analysis of genus Jatropha. Mol Biol Rep 36(5):901–907

    Google Scholar 

  • Pax F (1910) Euphorbiaceae—Jatropheae. In: Engler A (ed) Das Pflanzenreich IV. Verlag on Wilhelm Engelmann, Leipzig

  • Pierik RLM (1991) Commercial aspects of micropropagation. In: Prakash J, Pierik RLM (eds) Horticulture—new technologies and applications. Kluwer, Dordrecht, pp 141–153

  • Pinto AC, Guarieiro LLN, Rezende MJC, Ribeiro NM, Torres EA, Lopes WA, Pereira PAP, Andrade JB (2005) Biodiesel: An overview. J Brazil Chem Soc 16:1313–1330

    CAS  Google Scholar 

  • Prabakaran AJ, Sujatha M (1999) Jatropha tanjorensis Ellis & Saroja, a natural interspecific hybrid occurring in Tamil Nadu, India. Genet Resour Crop Evol 46:213–218

    Google Scholar 

  • Purkayastha J, Sugla T, Paul A, Solleti SK, Mazumdar P, Basu A, Mohommad A, Ahmed Z, Sahoo L (2010) Efficient in vitro plant regeneration from shoot apices and gene transfer by particle bombardment in Jatropha curcas. Biol Planta 54(1):13–20

    CAS  Google Scholar 

  • Qi-Bao Sun, Lin-Feng Li, Yong Li, Guo-Jiang Wu, Xue-Jun Ge (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865–1871

    Google Scholar 

  • Qin J (2005) Bio-hydrocarbons from algae, Report for the Rural Industries Research and Development Corporation, RIRDC Publication No. 05/025

  • Qin WL, Yi Wei-DaL, Shu-Lin P, Ying XU, Lin T, Fang C (2004) Plant regeneration from epicotyl explants of Jatropha curcas. J Plant Physiol Mol Biol 30:475–478

    Google Scholar 

  • Raemakers CJJM, Bessembinder JJE, Staritsky G, Jacobsen E, Visser RGF (1993a) Induction, germination and shoot development of somatic embryos in Cassava. Plant Cell Tissue Organ Cult 33:151–156

    Google Scholar 

  • Raemakers CJJM, Schavemaker CM, Jacobsen E, Visser RGE (1993b) Improvements of cyclic somatic embryogenesis of Cassava (Manihot esculenta Crantz). Plant Cell Rep 12:226–229

    Google Scholar 

  • Raemakers KJJM, Jacobsen E, Visser RGF (1999) Direct cyclic somatic embryogenesis of Cassava for production purposes. Plant Cell Cult Protocols 111:61–70

    CAS  Google Scholar 

  • Raemakers K, Jacobsen E, Visser R (2000) The use of somatic embryogenesis for plant propagation in Cassava. Mol Biotech 14:215–221

    CAS  Google Scholar 

  • Rajore S, Batra A (2005) Efficient plant regeneration via shoot tip explant in Jatropha curcas. J Plant Biochem Biotech 14:73–75

    Google Scholar 

  • Ramadhas AS, Jayaraj S, Muraleedharan C (2004a) Biodiesel production from high FFA rubber seed oil. Fuel 84:335–340

    Google Scholar 

  • Ramadhas AS, Jayaraj S, Muraleedharan C (2004b) Use of vegetable oils as I.C. engine fuels—a review. Renew Energy 29:727–742

    CAS  Google Scholar 

  • Ranade SA, Srivastava AP, Rana TS, Srivastava J, Tuli R (2008) Easy assessment of diversity in Jatropha curcas L. plants using two single-primer amplification reaction (SPAR) methods. Biomass Bioenergy 32:533–540

    CAS  Google Scholar 

  • Reddy MP, Chikara J, Patolia JS, Ghosh A (2007) Genetic improvement of Jatropha curcas adaptability and oil yield In: FACT SEMINAR on Jatropha curcas L. agronomy and genetics. FACT Foundation, Wageningen

  • Reddy MP, Kumar N, Vijay Anand KG, Singh AH, Singh S (2008) Method for micropropagation of Jatropha curcas plants from leaf explants (Patent filed US and PCT, File No. 2537de2008)

  • Reinert J (1958) Morphogenese und ihre Kotrolle an Gewebekulturen aus Corotten. Naturwiss 45:344

    CAS  Google Scholar 

  • Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some; on the role of phenotypic plasticity in plant invasions. Eco Lett 9:981–993

    Google Scholar 

  • Sardana J, Batra A, Ali DJ (2000) An expeditious method for regeneration of somatic embryos in Jatropha curcas L. Phytomorphology 50:239–242

    Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    PubMed  CAS  Google Scholar 

  • Senthil Kumar R, Parthiban KT, Govinda Rao M (2009) Molecular characterization of Jatropha genetic resources through inter-simple sequence repeat (ISSR) markers. Mol Biol Rep 36:1951–1956

    PubMed  CAS  Google Scholar 

  • Shay EG (1993) Diesel fuel from vegetable oils: status and opportunities. Biomass Bioenergy 4:227–242

    CAS  Google Scholar 

  • Shrivastava S, Banerjee M (2008) In vitro clonal propagation of physic nut (Jatropha curcas L): Influence of additives. Int J Integrative Biol 3:73–79

    CAS  Google Scholar 

  • Singh A, Reddy MP, Chikara J, Singh S (2010) A simple regeneration protocol from stem explants of Jatropha curcas—a biodiesel plant. Ind Crops Prod 31:209–213

    CAS  Google Scholar 

  • Soomro R, Memon RA (2007) Establishment of callus and suspension culture in Jatropha curcas. Pak J Bot 39:2431–2441

    Google Scholar 

  • Soontornchainaksaeng P, Jenjittikul T (2003) Karyology of Jatropha (Euphorbiaceae) in Thailand. Thai For Bull 31:105–112

    Google Scholar 

  • Stamp JA (1987) Somatic embryogenesis in Cassava: the anatomy and morphology of the regeneration process. Ann Bot 59:451–459

    Google Scholar 

  • Stamp JA, Henshaw GG (1982) Somatic embryogenesis in Cassava. Zpflanzenphysiology 105:183–187

    Google Scholar 

  • Stamp JA, Henshaw GG (1987) Somatic embryogenesis from clonal leaf tissue of Cassava. Ann Bot 59:445–450

    Google Scholar 

  • Steward FC (1958) Growth and development of cultured cells. III. Interpretations of the growth from cell to carrot plant. Am J Bot 45:709–713

    Google Scholar 

  • Strasburger E (1878) Uber Polyembryonie Jenaische Z. Naturwiss 12:64

    Google Scholar 

  • Subramanyam K, Muralidhararao D, Devanna N (2009) Genetic diversity assessment of wild and cultivated varieties of Jatropha curcas (L.) in India by RAPD analysis. Afr J Biotech 8:1900–1910

    CAS  Google Scholar 

  • Sujatha M, Mukta N (1996) Morphogenesis and plant regeneration from tissue cultures of Jatropha curcas. Plant Cell Tissue Organ Cult 44:135–141

    Google Scholar 

  • Sujatha M, Sivaraj N, Prasad MS (2000) Biochemical and histological changes during in vitro organogenesis in Jatropha integerrima. Biol Plant 43:167–171

    CAS  Google Scholar 

  • Sujatha M, Makkar HPS, Becker K (2005) Shoot bud proliferation from axillary nodes and leaf sections of non-toxic Jatropha curcas L. Plant Growth Reg 47:83–90

    CAS  Google Scholar 

  • Sujatha M, Reddy TP, Mahasi MJ (2008) Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotech Adv 26:424–435

    CAS  Google Scholar 

  • Sun Q-B, Li L-F, Li Y, Wu G-J, Ge X-J (2008) SSR and AFLP 959 markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865–1871

    Google Scholar 

  • Szabados L, Hoyos R, Roca W (1987) In vitro somatic embryogenesis and plant regeneration of Cassava. Plant Cell Rep 6:248–251

    CAS  Google Scholar 

  • Tatikonda L, Wani SP, Kannan S, Beerelli N, Sreedevi TK, Hoisington DA, Devi P, Varshney RK (2009) AFLP based molecular characterization of an elite germplasm collection of Jatropha curcas, a biofuel plant. Plant Sci 176:505–513

    CAS  Google Scholar 

  • Thepsamran N, Thepsithar C, Thongpukdee A (2007) In vitro multiple shoot induction of physic nut (Jatropha curcas). http://www.scisoc.or.th/stt/32/sec_f/paper/stt32_F_F0007.pdf

  • Tong L, Peng SM, Deng WY, Ma DW, Xu Y, Xiao M (2006) Characterization of a new stearoyl-acyl carrier protein desaturase gene from Jatropha curcas. Biotech Lett 28:657–662

    Google Scholar 

  • Trivedi S, Gaudani H, Gupta M, Gupta N, Patil P, Krishna VK, Reddy MP (2009) Establishment of Agrobacterium-mediated genetic transformation in Jatropha curcas L. Int J Agric Sci 1(2):11–20

    Google Scholar 

  • Varshney A, Johnson TS (2010) Efficient plant regeneration from immature embryo cultures of Jatropha curcas, a biodiesel plant. Plant Biotech Rep 4:139–148

    Google Scholar 

  • Varshney A, Sangapillai R, Patil M, Johnson TS (2011) Histological evidence of morphogenesis from various explants of Jatropha curcas L. Trees. doi:10.1007/s00468-011-0546-x

  • Warakagoda PS, Subasinghe S (2009) In vitro culture establishment and shoot proliferation of Jatropha curcas L. Trop Agric Res Ext 12:77–80

    Google Scholar 

  • Witkowska M, Ohmido Nobuko, Cartagena J, Shibagaki N, Kajiyama S, Fukui K (2009) Physical mapping of ribosomal DNA genes on Jatropha curcas chromosomes by multicolour FISH. Cytologia 74(2):133–139

    CAS  Google Scholar 

  • Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29(1):36–57

    CAS  Google Scholar 

  • Ying Z, Yunxiao W, Luding J, Ying X, Yingchun W, Daihua L (2007) Aquaporin JcPIP2 is involved in drought responses in Jatropha curcas. Acta Biochem Biophys Sin 39:787–794

    Google Scholar 

  • Zhang F, Niu B, Wang Y, Chen F, Wang S, Xu Y (2008) A novel betaine aldehyde dehydrogenase gene from Jatropha curcas, encoding an enzyme implicated in adaption to environmental stress. Plant Sci 174:510–518

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Sudhakar Johnson or Timir Baran Jha.

Additional information

P. Mukherjee and A. Varshney contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, P., Varshney, A., Johnson, T.S. et al. Jatropha curcas: a review on biotechnological status and challenges. Plant Biotechnol Rep 5, 197–215 (2011). https://doi.org/10.1007/s11816-011-0175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-011-0175-2

Keywords

Navigation