Skip to main content
Log in

Effect of porosity gradient in cathode gas diffusion layer on electrochemical performance of proton exchange membrane fuel cells

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Proton exchange nembrane fuel cells (PEMFCs) are highly promising energy devices for future transportation and distributed power stations. The electrochemical performance of PEMFCs assembled with gas diffusion layer (GDL) of different porosity gradient distributions has been analyzed using the lattice Boltzmann method. A single-phase multi-component lattice Boltzmann model employing the active approach was developed to investigate the reactive gas flow within the GDL. Two types of GDLs with the same porosity, namely multilayer porosity gradient GDLs and linear porosity gradient GDLs, were generated to investigate the effect of the porosity gradient of the GDL on the electrochemical performance of PEMFC. The results show that the two types of porosity gradient GDL improve oxygen starvation problems and enhance water management, and that the GDLs with smaller porosity gradients can increase the mean current density. This paper develops the study of pore-scale analysis of PEMFC performance and can provide guidance for the design of GDL structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wu, W. Yang, J. Zhan, H. Yan, X. Kon and X. Zuo, Korean J. Chem. Eng., 39, 2055 (2022).

    Article  CAS  Google Scholar 

  2. D. Joo, K. Han, J. H. Jang and S. Park, Korean J. Chem. Eng., 36, 299 (2019).

    Article  Google Scholar 

  3. G. R. Molaeimanesh, M. H. Shojaeefard and M. R. Moqaddari, Korean J. Chem. Eng., 36, 136 (2019).

    Article  CAS  Google Scholar 

  4. A. K. Hussein, H. K. Hamzah, F. H. Ali and M. Afrand, Korean J. Chem. Eng., 39, 887 (2022).

    Article  CAS  Google Scholar 

  5. D. Zhang, Q. Cai and S. Gu, Electrochim. Acta, 262, 282 (2018).

    Article  CAS  Google Scholar 

  6. D. Froning, J. Brinkmann, U. Reimer, V. Schmidt, W. Lehnert and D. Stolten, Electrochim. Acta, 110, 325 (2013).

    Article  CAS  Google Scholar 

  7. W.-Z. Fang, Y.-Q. Tang, L. Chen, Q.-J. Kang and W.-Q. Tao, Int. J. Heat Mass Transf., 126, 243 (2018).

    Article  Google Scholar 

  8. M. Espinoza-Andaluz, R. Reyna, A. Moyón, T. Li and M. Andersson, Int. J. Hydrogen Energy, 45, 29824 (2020).

    Article  CAS  Google Scholar 

  9. Z. Jiang, G. Yang, S. Li, Q. Shen, J. Liao, H. Wang, M. Espinoza-Andaluz, R. Ying and X. Pan, Comput. Mater. Sci., 190, 110286 (2021).

    Article  CAS  Google Scholar 

  10. H. Zhang, L. Zhu, H. B. Harandi, K. Duan, R. Zeis, P.-C. Sui and P.-Y. A. Chuang, Energy Conv. Manag., 241, 114293 (2021).

    Article  CAS  Google Scholar 

  11. Y. Gao, T. Jin, X. Wu and T. Zhang, Energies, 12, 2808 (2019).

    Article  CAS  Google Scholar 

  12. P. A. García-Salaberri, I. V. Zenyuk, A. D. Shum, G. Hwang, M. Vera, A. Z. Weber and J. T. Gostick, Int. J. Heat Mass Transf., 127, 687 (2018).

    Article  Google Scholar 

  13. L. Zhu, H. Zhang, L. Xiao, A. Bazylak, X. Gao and P.-C. Sui, J. Power Sources, 496, 229822 (2021).

    Article  CAS  Google Scholar 

  14. A. Nabovati, J. Hinebaugh, A. Bazylak and C. H. Amon, J. Power Sources, 248, 83 (2014).

    Article  CAS  Google Scholar 

  15. M. Yang, Y. Jiang, J. Liu, S. Xu and A. Du, Int. J. Hydrogen Energy, 47, 10366 (2022).

    Article  CAS  Google Scholar 

  16. Y. Ira, Y. Bakhshan and J. Khorshidimalahmadi, Int. J. Hydrogen Energy, 46, 17397 (2021).

    Article  CAS  Google Scholar 

  17. D. H. Jeon, J. Power Sources, 475, 228578 (2020).

    Article  CAS  Google Scholar 

  18. J.-H. Lin, W.-H. Chen, Y.-J. Su and T.-H. Ko, Fuel, 87, 2420 (2008).

    Article  CAS  Google Scholar 

  19. S. Li, J. Yuan, M. Andersson, G. Xie and B. Sundén, J. Electrochem. Energy Convers. Storage, 14, 031007 (2017).

    Article  Google Scholar 

  20. R. Bahoosh, M. Jafari and S. S. Bahrainian, Korean J. Chem. Eng., 38, 1703 (2021).

    Article  CAS  Google Scholar 

  21. M. Nazemian and G. R. Molaeimanesh, Acta Mech. Sin., 36, 367 (2020).

    Article  CAS  Google Scholar 

  22. G. R. Molaeimanesh and M. Dahmardeh, Fuel Cells, 21, 208 (2021).

    Article  CAS  Google Scholar 

  23. L. Chen, H.-B. Luan, Y.-L. He and W.-Q. Tao, Int. J. Therm. Sci., 51, 132 (2012).

    Article  Google Scholar 

  24. G. R. Molaeimanesh and M.H. Akbari, Korean J. Chem. Eng., 32, 397 (2015).

    Article  CAS  Google Scholar 

  25. R. Bahoosh, M. Jafari and S. S. Bahrainian, J. Heat Mass Transf. Res., 6, 105 (2019).

    Google Scholar 

  26. M. Habiballahi, H. Hassanzadeh, M. Rahnama, S. A. Mirbozorgi and E. J. Javaran, Proc. Inst. Mech. Eng. Part A-J. Power Energy, 235, 546 (2021).

    Article  CAS  Google Scholar 

  27. X. Shangguan, Y. Li, Y. Qin, S. Cao, J. Zhang and Y. Yin, Electrochim. Acta, 371, 137814 (2021).

    Article  CAS  Google Scholar 

  28. Y.-X. Huang, C.-H. Cheng, X.-D. Wang and J.-Y. Jang, Energy, 35, 4786 (2010).

    Article  CAS  Google Scholar 

  29. B. K. Kanchan, P. Randive and S. Pati, Int. J. Hydrogen Energy, 45, 21836 (2020).

    Article  CAS  Google Scholar 

  30. M. Espinoza, B. Sundén and M. Andersson, ECS Trans, 78, 2785 (2017).

    Article  Google Scholar 

  31. H. Wang, G. Yang, S. Li, Q. Shen, J. Liao, Z. Jiang, M. Espinoza-Andaluz, F. Su and X. Pan, Int. J. Hydrogen Energy, 46, 22107 (2021).

    Article  CAS  Google Scholar 

  32. H. Wang, G. Yang, S. Li, Q. Shen, J. Liao, Z. Jiang, G. Zhang, H. Zhang and F. Su, Energy Fuels, 35, 15058 (2021).

    Article  CAS  Google Scholar 

  33. Y. Ira, Y. Bakhshan and J. Khorshidimalahmadi, Proc. Inst. Mech. Eng. Part A-J. Power Energy, 236, 61 (2022).

    Article  CAS  Google Scholar 

  34. Q. Zou and X. He, Phys. Fluids, 9, 1591 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51779025 and No. 52001045), Science and Technology Innovation Foundation of Dalian, China (No. 2021 JJ11CG004). Particularly, thanks for Huixin Guo’s help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Additional information

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Wang, H., Su, F. et al. Effect of porosity gradient in cathode gas diffusion layer on electrochemical performance of proton exchange membrane fuel cells. Korean J. Chem. Eng. 40, 1598–1605 (2023). https://doi.org/10.1007/s11814-023-1383-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1383-5

Keywords

Navigation